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ABSTRACT

IDENTIFICATION OF DISCRETE TIME
BILINEAR SYSTEMS THROUGH
EQUIVALENT LINEAR MODELS

NECDET BERK HIZIR

This work discusses 3 methods for identification of discrete-time, time-invariant, single-
input, multi-output, state-space bilinear models using the steady-state portion of a single
input/output time-history recorded by exciting the system with a linear combination of
sines and cosines of user-selected frequencies enriched by a subtle amount of random com-
ponent. The proposed methods rely on conversion of the bilinear system into an equivalent
linear model (ELM) by an accurate approximation of the state in the bilinear term using
a set of sine and cosine basis functions whose frequencies are obtained using an Nth order
perturbation theory approximation of the state.

In the first proposed method, Observer/Kalman Filter Identification (OKID), a linear
time invariant (LTI) system identification algorithm, is used to identify the aforementioned
ELM from which the original bilinear model is recovered.

In the second proposed method, the aforementioned ELM is converted to an overpa-

rameterized ELM by replacing its original state time-history with its past input/output
time-history. The order of the new ELM is reduced by discarding its unobservable states.
Since the state time-history of the ELM is (known and) common to the bilinear model, the
original bilinear system is recovered via a least-square fit.

On the other hand, in the third proposed method, the aforementioned ELM is identified

using a direct method of LTI system identification. Perturbation theory is used to show
that the identified ELM can be used to identify the steady-state portion of the state time-
history corresponding to (N + l)th order perturbation theory approximation of the state.
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An iterative process is defined whereby the steady-state portion of the state time-history
is identified exactly. The bilinear system matrices are identified via a least-square fit using
the steady-state portion of the identified state-time history.

Numerical examples are also provided.



www.manaraa.com

Contents

1 Introduction 1

1.1 What is a Bilinear System? 1

1.1.1 Floquet's Theorem and Stability 5

1.1.2 Observability and Controllability 6

1.1.3 Applications 9

1.2 Bilinear System Identification Methods 10

1.3 Observer/Kalman Filter Identification (OKID) 15

1.4 Organization of the Thesis 20

2 Identification of Bilinear Systems Through Equivalent Linear Models via
Observer/Kalman Filter Identification (OKID) Algorithm 22

2.1 Notation and Basic Formulation 23

2.2 Linearization of The Bilinear Problem 23

2.2.1 Perturbation Theory 24

2.3 Identification of the ELM 26

2.4 Recovery of the Bilinear System from the Identified ELM 29

2.5 The Effect of The Parameters The User Can Choose 30

2.5.1 Length of Input/Output Time-Histories 31



www.manaraa.com

2.5.2 Amount of Random Component 31

2.5.3 OKID Related Parameters 35

2.5.4 Perturbation Order N 38

2.5.5 Choice of O0 40

2.6 Numerical Example 42

2.7 Conclusions 53

3 Identification of Bilinear Systems Through Equivalent Linear Models via
Data Driven Basis Functions 54

3.1 Introduction 55

3.2 A "Pick Your Own States" Approach 55

3.2.1 Orthogonal Basis Functions 57

3.2.2 Input Reduction 58

3.2.3 Input Absorption 59

3.2.4 Rotation Equation 60

3.3 The Proposed Method 61

3.3.1 Data Driven Basis Functions 61

3.3.2 Identification of the ELM 64

3.3.3 Recovery of the Bilinear System 67

3.4 The Effect of the Parameters the User Can Choose 68

3.4.1 The Parameter ? 68

3.4.2 Cutoff Frequency of HRC 69

3.4.3 The Amount of HRC 69

3.5 Numerical Example 70

3.6 Conclusions 85

ii



www.manaraa.com

4 Identification of Bilinear Systems Through Equivalent Linear Models via
an Iterative Method 88

4.1 Introduction 89

4.2 The Proposed Method 90

4.2.1 Perturbation Theory Revisited 90

4.2.2 Iterative Method of Identification 92

4.3 Illustrative Numerical Example 97

4.3.1 Generic Numerical Example 102

4.4 Conclusions 108

5 Conclusions and Future Research 109

5.1 Conclusions 109

5.2 Future Research 114

m



www.manaraa.com

List of Figures

1.1 Output time-histories generated by a small amplitude input 4

1.2 The complete set of 8-point, discrete-time Walsh Functions as an example . 13

2.1 The Performance of Least-Square Fitting For Different Data Lengths . ... 32

2.2 The effect of the enrichment of the input by addition of different amounts of
WGN on the matrix V 34

2.3 The effect of ? on the ill-condition of the matrix V 37

2.4 The effect of the perturbation order N on the state approximation via basis
functions 39

2.5 The singular value plot of the matrix V, for various values of the perturbation
order TV 41

2.6 Signals constructed from a set of evenly spaced frequencies and randomly
spaced frequencies 43

2.7 The plots of the singular values of the matrix Vf and V formed both before
and after the addition of RC 46

2.8 The performance of least-square fitting for different data lengths 47

2.9 The measured output time-history y(k) and its representation y(k) in terms
basis functions </>(&) 48

2.10 The time-history of the second state of the original bilinear system X2 (k) and
its representation X2 (k) in terms of the basis functions $(/c) 50

iv



www.manaraa.com

2.11 The measured output time-history y(k) and its reproduction by the ELM
yofe(^) m terms basis functions (¡>{k) 51

2.12 The predicted output time-history yp(k) and the simulated test output time-
history y&{k) 52

3. 1 The Bode plot of the IO"1 order Butterworth filter with cutoff frequency 45Hz
used in obtaining the HRC from a randomly generated WGN signal .... 71

3.2 72

3.3 The plot of the steady-state portion of the time-history of y(fc) and its rep-
resentation y(k), in terms of the basis functions 74

3.4 The plot of the steady-state portion of the time-history of the second state
X2(k) and its representation x% {k), in terms of the basis functions 75

3.5 77

3.6 The plot of the steady-state portion of the time-history of the second state
X2(k) and its representation (xz)2(k), in terms of the basis functions .... 79

3.7 80

3.8 The plot of the 2-norm of the eigenvalues of the matrix Aw 81

3.9 82

3.10 The plot of the steady-state portion of the time history of the reproduced
outputs Vu,(A;) and yr(k) against the original output y(k) 84

3.11 The plot of the singular values of the matrix Q 85

3.12 The predicted output time-history yp(k) and the simulated test output time-
history yt(k) 86

4.1 The PSD plots of the steady-state portions of the time-histories of x(fc) and
xN(k) for N = 1,2, 3, 4, 5, 10 98

4.2 The plot of the steady-state portion of the state x(fc) and its Ist order ap-
proximation x(k) 100

?



www.manaraa.com

4.3 The PSD plots of the steady-state portions of the time-histories of the re-
produced state Z^k)(I = 2,3,4,5), the state of the original bilinear system
x(fc), excitation input u(k) and ith order perturbation theory approximation
of the state X4(A)(I = 2,3,4,5) 101

4.4 The plot of error (y(k),yZi (k)) versus the approximation order i 102

4.5 The plot of the time-history of excitation input u{k) before and after enrich-
ment by hrc(k) 104

4.6 The plot of error(y(k),yZì(k)) versus the approximation order i 105

4.7 The predicted output time-history yp{k) and the simulated test output time-
history yt(fc) 107

Vl



www.manaraa.com

List of Tables

2.1 The effect of different amounts of RC on the condition number of K2V ¦ ¦ ¦ 35

2.2 The effect of different amounts of RC on the state approximation error ... 36

2.3 The effect of ? on the condition number of V 36

2.4 The effect of the perturbation order N on the state approximation error . . 38

2.5 The effect of the perturbation order N on 2-norm condition number of the
matrix V 40

2.6 The value of the parameters used in the construction of the base input signal
u(k) described in Eq.(2.2) 44

3.1 The effect of the type of enrichment of u(k) on the mismatch between the
first and second states, x\{k) and X2(k), and their representations, denoted
by x\{k) and X2(k), in terms of the sine and cosine basis functions 76

vu



www.manaraa.com

Acknowledgments
First and foremost, I would like to thank Prof. Raimondo Betti for guiding me through-

out my graduate education, opening me the doors to a whole new field which I enjoyed
exploring tremendously, and setting me up in a research team every meeting of which was
such a great pleasure and privilege to attend. His contribution and support have been
immense, my gratitude is endless. Grazie mille, Professore!

I would like to extend my deepest gratitudes to Prof. Richard W. Longman from whom
I acquired most of the quantitative skills that I needed to complete this work. His teaching,
experience and guidance have been most valuable; our discussions most rewarding.

My most cordial thanks are due to Prof. Minh Q. Phan. I have benefited vastly from his
innovative approach to research and problem-solving. He has always been a great source of
inspiration as a scholar and one of the main reasons why this work exists in the first place.

My thanks are also due to Prof. George Deodatis and Prof. Andrew W. Smyth. I have
benefited from their teaching and advices significantly.

Last, but surely not least, I would like to thank my comrades at Columbia University
who have made my experience the most enjoyable and special. My thanks are due to Gunes
Demet Senturk, Efe Karanci, Cengiz Ucbenli, Virginia Mosquera, Ah Lum Hong, Jie Xu
and Eleni Chatzi. Their friendship and support meant a lot to me.

Berk Hizir

Columbia University,

June 2010

Vili



www.manaraa.com

"/ think there is a bug in your prgoarrfC. .
Raimondo Betti

ix



www.manaraa.com

1

Chapter 1

Introduction

1.1 What is a Bilinear System?

In the context discussed in this thesis, system identification involves the use of mathe-
matical tools on measured data to develop a dynamical model that characterizes the time-
dependent behavior of a system such that the identified system can be used to predict the
response of the system due to any excitation.

The fields of applications of system identification are as numerous as the fields where
dynamical models are needed, ranging from Engineering to Social Sciences. In many of
these applications, the systems to be identified behave linearly or almost linearly, and
linearity introduces the simplifications that come with the principle of superposition of
effects. These reasons made linear system identification a very active research topic in the
past and currently a well-established field with various, highly-accurate methods available
in the literature, Ref. [1-13]. However, not all systems behave linearly, and there arises
a need for more complicated models, yet still have relatively simple dynamic behavior to
analyze. This makes bilinear systems, which stand out as a transition step between linear
and nonlinear systems, a tempting option to use (see frequently cited survey papers Ref. [14-
16]).

A discrete-time, time-invariant, multi-input, multi-output bilinear system can be written
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in the state-space form, as in Eq. (1.1) and (1.2).

x(fc + 1) = Ax(Jk) + Bu(A;) + Nu(Jt) ® x(fc) (1.1)

y(jfe) = Cx(A;) + Du(A;) (1.2)

where k denotes the kth time-step, while r is the sampling interval such that x(/e) implies
x(fcr). The ? ? 1 vector x(/c) G R" is the state vector, y (A;) G W is the output vector, while
u(k) G K'm is the input (or control) vector with components u¿(fc) G R (i — 1, 2, · · ¦ , m). The
? ? ? matrix A G R" ?™ is the state matrix, B G R"xm represents the input matrix, while
C G Wxn and D G Rrxm indicate the output and direct transmission matrices, respectively.
The matrix N G K.nxmn is the matrix that weighs the bilinear term u(/c) ® x(/c), where
<g> represents the kronecker product. The matrix N is of the form Ni N2 · · ¦ N771 ,
where each matrix N¿ G Rnx™ weighs the bilinear term x(k)ui(k) associated with the
corresponding input. Eq. (1.1) can be viewed in another commonly used, yet less compact
form by expanding it as follows:

m

x(fc + 1) = Ax(Zc) + Bu(fc) + S NiX(JbK(A;) (1.3)
»=i

The bilinear systems of the form in Eq. (1.4), where the input matrix B = O are called
homogeneous bilinear systems.

x(A; +1) = Ax(A;) + J^N¿x(A;)u¿(A;) (1.4)
¿=i

Moreover, if also the state matrix A = 0 as in Eq. (1.5), such systems are called symmetric.
m

x(A;+ 1) = ]G Nx(A-K(A;) (1.5)
¿=?

Eq. (1.3) reduces to the form in Eq.(1.6) for a single-input bilinear system, which will be
the main focus of this work.

x(A; + 1) = Ax(A;) + Bu(A;) + Nx(fc)u(Jfc) (1.6)

By definition being linear in the state and the input separately, bilinear systems can be
viewed as linear, time-varying systems as shown in Eq. (1.7).

m

x(Ä + 1) = [A + S NiUi(k)]x{k) + Bu(Zc) (1.7)
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where [A + ¿ N¿u¿(A;)] represents the time-varying state matrix. One way of interpreting
Eq. (1.7) is by noting that the state matrix is obtained by weighing the matrix A by 1 and
the matrices N¿ by the inputs Ui(k) at each time step. Inputting an excitation u(fc) such
that ||u(fc)|| <C 1 makes the system behave close to a linear, time-invariant system as in
Eq.(1.8)

(1.8)
x(k + 1) = Ax(A;) + Bu(Zc)

y(fc) = Cx(fc) + Du(fc)

As a quick illustration of this behavior, consider a bilinear system of the form in Eq.(1.6)
where the system matrices are defined as

C =

0.9924 0.0118

-1.1778 0.8747

1 2l,D = 0

,B =
0.0126

0.0042
,N

0.2 0

0 0.2 (1.9)

Feeding a random input that takes random values from a uniform distribution defined in
the interval [0, 0.01], the bilinear system outputs a response virtually identical to the output
of the equivalent linear system of the form in Eq.(1.8), as shown in Fig. 1.1

Furthermore, when the applied input is constant, a bilinear system becomes a linear,
time-invariant system, in accordance with the form in Eq.(1.7). This property was used by
various researchers working on stabilization, control and identification of bilinear systems,
examples of which include Ref. [16-22].

Having discussed various ways to interpret bilinear systems, one wonders about the
conditions needed for determining their stability. The derivation of a stability criterion for
bilinear systems is not as straightforward as that for linear systems, since there exists no
known closed-form solutions as stated in Ref. [23] , although a Volterra Series expansion can
be used to serve as an approximation to the solution as discussed in Ref. [24-26]. However,
due to the fact that bilinear systems can be considered as linear, time-varying systems,
Floquet's Theorem can be employed to derive conditions for the stability of bilinear sys-
tems subject to periodic input excitations (see Ref. [27-29] for a more generic and detailed
discussion or examples).
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Figure 1.1: Output time-histories generated by a small amplitude input
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1.1.1 Floquet's Theorem and Stability

Consider the following linear time-varying system whose state matrix A(k) varies with
time with a period T:

?.

x(k + 1) = A(k)x(k) + Bu(Ic)
(1.10)

y (Ie) = Cx(k) + -Du(k)

where A(k) = A(k + T). The stability of Eq. (1.10) does not depend on the input u(k),
therefore, for convenience, B can be assumed to be zero. Then, the state time-history can
be written as:

x(l) = A(Q)X(O) (1.11)

x(2) = ?(1)?(0)?(0) (1.12)

x(T) = [A(T - I)A(T - 2) · · · A(0)]x(0) = Mx(O) (1.13)

x(T + 1) - [A(T)M]X(O) = [.A(O)M]X(O) (1.14)

x(T + 2) = [?(1)?(0)?]?(0) (1.15)

?(2G) = ?2?(0) (1.16)

?(??) = Mnx(0) (1.17)

Assuming the matrix M has the eigenvalue decomposition M = SAS-1, where S is the
matrix of eigenvectors and A is the diagonal matrix of eigenvalues, Mn can be expressed as
SA"S_1. Using Eq. (1.17), it can be concluded that, if the eigenvalues of M are inside the
unit circle, then the system defined in Eq. (1.10) must be stable since, as ? goes to infinity
Mn, and therefore, x(nT) tends to zero. Note that this formulation does not define a
contraction mapping such as ||x(fc)|| > ||x(fc + 1)|| or even ||x(nT)|| > ||x((n + 1)T)|| which
requires the singular values of M to lie within the unit circle. It merely suggests that, as ?
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increases, x(nT) approaches zero (not necessarily monotonically), and thus, x(fcr) should
approach zero.

In the presence of a periodic input excitation with period T (i.e. u(k) = u(k + T)), the
bilinear system defined in Eq.(1.7) takes the form in Eq.(1.18).

x(k + 1) = A\k)x(k) + Bu(k) (1.18)

where Ä(k) = [A + Nu(fc)] and Ä(k) = A(k + T). Hence, the condition for asymptotic
stability of the bilinear system becomes the spectral radius of the matrix [A(T - I)A(T —
2) ¦ ¦ · A(O)] be less than 1.

In the case of an aperiodic excitation input, a time-invariant bilinear system can be
treated as a linear, time-varying system whose stability can be proved by satisfying one of
the various sufficient conditions for stability of linear time-varying systems available in the
literature such as Ref. [30; 31].

1.1.2 Observability and Controllability

The concepts of observability and controllability of dynamical systems were first intro-
duced by Ref. [32-34]. Complete observability of a system implies that, given a finite-length
measurement of the output, one can track back the full state vector at the start of the mea-
surement. The concept of observability is especially useful in system identification, since it
tells whether the unmeasurable states can be constructed using the output measurements,
which may possibly contain contributions from only some of the states.

On the other hand, complete controllability of a system implies that there exists an
input signal u(i) that can transfer any initial state x(0) e W1, where ? is the order of the
system, to any final state x(Z) G Kn in the finite time interval 0 < t < I. The importance of
observability and controllability stem from the fact that the identification of a system yields
only its controllable and observable part, leaving out its uncontrollable and/or unobservable
parts.
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One of the commonly used, necessary and sufficient conditions for observability and
controllability of continuous-time, time-invariant, linear systems of the form in Eq.(1.19)

x(i) = Ax(i) + Bu(i)
(1.19)

y(i) - Cx(i)

is that both the controllability matrix ? and the observability matrix T, defined in Eq. (1.20)
and (1.21),

C = B AB A2B ... AnlB

0 =

C

CA

(1.20)

(1.21)

_CAn-:1J
be full rank, respectively. These conditions are also called Kaiman rank conditions.

However, the above conditions are not applicable to bilinear systems, although as pre-
sented in Ref. [35-38] there exists sufficient (but not necessary) conditions to prove that a
nonlinear system is observable and controllable, and these conditions can be adapted to
bilinear systems as well, as performed in Ref. [39-42].

Consider a continuous-time, nonlinear system of the form

x(i) = f(x(t),u(t))
(1.22)

y(í) = h(x(í))

where x(í) G W1 is the state vector, u(i) G Rm is the input vector, while y(i) G W
represents the output vector. Each of these vectors have Xi{t) G R, Ui(t) G R and j/¿(í) G R,
respectively. The functions f (x, u) : R" xR™ -> R" and h(x) : W1 -» Rr are vector functions
comprised of the components /¿(x(í), u(i)) and /i¿(x(í)), respectively, and let's recall the
Lie derivative of hj with respect to f , defined as:

** = $<= S £/-i=l

and its partial derivative of order k with respect to ? :t.

OLpI1
dx2dxi dxn

(1.23)

(1.24)
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According to the Hermann-and-Krener Theorem, Ref. [36], a continuous-time, nonlinear
system is said to be strongly (globally) observable, if there exists an input u(t) for which the
rank of the matrix in Eq. (1.25) is equal to the order of the system for Vx e M"\0, where
En\0 denotes the ? dimensional space of real numbers excluding the origin. If the rank
condition is satisfied only for a small neighborhood of ? G IR", then the system is said to
be weakly (locally) observable. Note that for nonlinear systems observability is not solely a
system property but also depends on the input.

-QLQh1-
öxr

dLjhr
. dxT

dLJhi
3xT

dLfhr

dxT

. SxT

(1.25)

The rank-condition for observability is consistent with the Kalman-rank condition for linear
systems, and has already been generalized to discrete-time nonlinear systems in Ref. [43].

As a demonstration of the rank-condition, consider the single-input, single-output bilin-
ear system of the form in Eq. (1.26)

*(*) =

y(*) =

? ?

-100 -10
x(t)- u(t) +

1 0

0 1
x(i)u(i)

(1.26)
1 2 x(i)

where f\ = x-i + u + x\u, /2 = — lOOzi — 10x2 + u + x^u and h = x\ + 2x2· Then, the rank



www.manaraa.com

9

condition becomes as in Eq. (1.27).

rank

dh
dxT

dL)h

dL°fh
dxT .

rank
1 2

X2+U + X\u — 200a;i — 20^2 + 2u + 2x-¿u
(1.27)

For instance, for x\ = X2 = 1, the rank condition is satisfied and the bilinear system is
concluded to be locally observable about this point. On the other hand, for x\ = x-i =
0 the rank condition is not satisfied, yet, this alone does not imply that the system is
globally unobservable, since (i) the rank condition is a sufficient but not necessary condition
for observability, and (ii) being locally unobservable at the origin does not imply global
unobservability, Ref. [16].

Similar results have been derived for controllability of bilinear systems as well. The
conditions derived for the controllability of nonlinear systems in Ref. [41] require that for
homogeneous bilinear systems of the form in Eq. (1.4) to be controllable (i) a Lie-rank condi-
tion be satisfied, (ii) the eigenvalues of the A matrix be imaginary and distinct. Moreover,
Ref. [42] presents sufficient conditions for controllability of symmetric bilinear systems of the
form in Eq. (1.5).

1.1.3 Applications

Bilinear systems find applications in a variety of fields. In chemical engineering, con-
tinuous stirred-tank reactors (CTSR), nuclear fission reactors and distillation columns are
modeled and controlled by bilinear systems. For example, Ref. [44] describes a method to
approximate distillation processes via bilinear models. Ref. [45] uses the aforementioned
method to accurately approximate a 3-input (flow rates and heating power), single-output
(head concentration), 11-state nonlinear distillation column using a 3-state bilinear model.
The identified reduced order model is shown to remain robust even under large input, output
variations.

In biology and ecology, as presented in Ref. [46], microbial cell growth and product for-
mation of various waste treatment and fermentation systems can be modeled using bilinear
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systems. An estimate of the state is used to compensate for the lack of accurate biologi-
cal sensors. The state estimate can also be used for the on-line control of these biological
processes.

In demography, bilinear control models are used in various demographic processes to
examine birth rates, death rates, migration rates, differentiation rates, etc. for their so-
cioeconomic implications. Ref. [47] generalizes these discussions from human demographics
to general biological species and cells with particular emphasis to compartimentai processes
where migration between regions or compartments occur.

Within the aforementioned framework, in immunology, bilinear systems are utilized to
examine the behavior of white blood cells called lymphocytes. Ref. [48] presents a model for
compartmental control of the immune process. Ref. [49] develops such models for a specific
type of lymphocytes called T-cells and B-cells to inspect their generation of antibody to
bind alien antigens.

Even economy is among the fields of applications of bilinear systems, Ref. [50]. In
Ref. [51], several bilinear versions of the Harrod-Domar macroeconomical growth model are
derived, and their sensitivity is analyzed.

1.2 Bilinear System Identification Methods

Although the literature contains various methods for stabilization and control of bilinear
systems, their identification is not as well understood. The currently available methods
either put restrictions on the type of input excitations used or demand a high number of
experiments that grow with the size of the system or are valid only for specific types of
bilinear systems.

The bilinear system identification methods can be roughly categorized as exact methods
and approximate methods, such as those proposed in this thesis. The exact methods aim to
identify a realization of the bilinear system matrices directly whereas approximate methods
convert the bilinear system identification problem to a linear one. Most of the methods
from both categories use either the fact that bilinear systems can be treated as lineai-,
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time-varying systems or the fact that they become linear, time-invariant systems when
the applied input excitation is constant. In general, the approximate methods rely on the
conversion of the bilinear systems to linear ones by employing various series expansions on
the inputs, outputs and/or states.

Ref. [11-13] present the theory and several versions of the algorithms of the subspace
identification for linear systems, where 4 subspaces are defined using the measurements
of input/output time-histories: past input Up, past output Yp, future input Uf and future
output Yf. The state space X is shown to be contained by [UPUYP} alone and by {UfUYf}
alone. Since X lies in both of these subspaces, it must be contained by their intersection

[UpUYp}r\[UfUYf}. Then, Grassmann's Dimension Theorem, which states the dimension
of the space formed by the union of any 2 spaces is equal to the sum of the dimensions of
each of the 2 spaces minus the dimension of the space formed by the intersection of the
2 spaces, is used to prove that the dimension of the space {Up U Yp} ? [Uf U Y/}, which
contains X, is equal to the order of the system, which is equal to the dimension of X, as
shown in Eq. (1.28)

dim({Up U Yp} ? [Uf U Yf)) = dim(Up U Yv) + dim(Uf U Yf)

-dim([UpUYp}U[UfUYf}) (1-28)
= dim(X)

where dim{·) represents the dimension of the space ·. In other words, the subspace [Up U
Yp} ? [Uf U Yf} and the state-space X have equivalent sets of basis vectors. Thus, a matrix
whose rows are the basis vectors for [Up U Yp} ? [Uf UYf} is in fact a realization of the state
time-history. Once the state time-history is determined, a least-square fit is performed to
obtain the system matrices. The extraction of the basis vectors of X can be accomplished
by first forming Yf by orthogonally projecting the basis vectors that span Yf on the space
formed by the union of Uf, Up, Yp; then, subtracting the oblique projection of Yf on Uf
from Yf to obtain X. Ref. [52-54], extends the above discussion for linear systems to bilinear
systems by treating them as time-varying linear systems. However, an important constraint,
which hammers the practicality of the algorithm, is imposed by bounding the excitation
input to be white noise.
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Ref. [18] discusses a method for identification of continuous-time bilinear systems using
noise corrupted output measurements by approximating the input and output time-histories
using block-pulse functions. Such a method is computationally costly, and could only be
shown to work for a single-input, single-output, first order system. Similarly, benefiting from
the fact that bilinear systems behave as linear, time-invariant systems under constant input,
Ref. [19; 20] discuss the identification of continuous-time bilinear systems using a family of
unit-pulses of fixed amplitude but varying widths as the inputs in a series of experiments
the number of which is proportional to the order of the system. Moreover, Ref. [21; 22] show
that neither step inputs nor single pulses, but fixed amplitude-varying width pulses suffice
for identification of bilinear systems. Therefore, the practical applicability of the current
form of this method is greatly hampered by the need for the high number of experiments
for large systems and the strict requirements on the type of the input utilized. Besides,
the identified continuous-time model needs to be discretized for its integration to a digital
environment such as a digital controller or computer, and depending on the method of
discretization this process may be a potential source of error.

Another alternative for converting bilinear systems to linear systems is using Walsh
functions, which are basically a train of pulse functions of varying widths with amplitudes
equal to either +1 or -1 (see Fig. 1.2 for an example). Walsh functions form an orthonor-
mal basis function set for square-integrable functions on the unit interval (see Ref. [55; 56]
for a more detailed description). In other words, in close resemblance to Fourier Series
expansion, periodic wave forms can be expressed in terms of Walsh functions via Walsh-
Hadamard Transform. Ref. [57] discusses solutions to linear systems using Walsh functions,
and Ref. [58] extends this reasoning to optimal control of time-varying linear systems. A
later work, Ref. [59; 60] presents a method for approximating solutions to bilinear systems
in a computationally efficient way using butterfly networks similar to those used for Fast
Fourier Transforms and Fast Walsh-Hadamard Transforms. As far as the identification of

bilinear systems is concerned, Ref. [61] presents a method of identification for continuous-
time, time-variant bilinear systems that relies on an accurate approximation of the input
and output signals by a finite set of Walsh functions. However, the method is only applica-
ble to systems that have the same number of outputs as the number of states. In addition,
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the difficulty of knowing in practice the system order in advance and the growth of the
computational cost with this number contribute to make the method impractical, despite
the promise of the method's applicability to more general problems than merely bilinear
ones.

Another transform used in the identification of bilinear systems is the Hartley Transform.
The Hartley Transform of a function, f(t) is calculated as in Eq.(1.29).

1 f+ OO

?{?) = -= / /(i)cas(wt)dt (1.29)\/2p J-oo
i r+cof{t) = -j= I H{w)cas{ujt)du (1.30)?2p J-OC

where cas(wí) = cos(u;í) + sin(o;í). As an alternative to Fourier Transform, Hartley Trans-
form maps real-valued functions to real-valued functions, and is an involution as shown in
Eq.(1.30) (see Ref. [62] for a more rigorous description and properties). Ref. [63; 64] discuss
the identification of continuous-time, bilinear systems in the observability canonical form,
where the bilinear system is treated as a linear, time-varying system. Taking the inner
product of the input and output functions with Hartley Modulating functions and using
their various properties, the model is brought to a form ready for identification of the model
parameters via regression. Finally, a frequency weighted least squares algorithm is used to
identify the system.

In the identification of causal nonlinear systems, one approach has used Volterra Series
expansion shown in Eq. (1.33), which can be thought as a combination of the Taylor series
expansion for memoryless nonlinear systems, as shown in Eq.(1.31) and the convolution
integral for causal linear systems, as shown in Eq. (1.32),

OO

í/(í) = S>?*)G (1.31)
i=0

OO

y(t) =/«(*" T)Ien(T)OT (1.32)
-OO

OO OO OO

y{t) = S / 1 / dri "¦ / 0IrnZcn(T1,- ·· ,Tn) Y[u(t-Tn) (1.33)
n~~ — OO -OO -OO

where Cn are the Taylor Series coefficients, u(t) is the input, y(t) is the output and fc„(r)
are the Volterra kernels (see Ref. [65] for more details and examples on Volterra series
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expansions). Ref. [66] proves that there exists an infinite number of non-vanishing Volterra
kernels for bilinear systems, and Ref. [67-70] discuss some of the algorithms used in the
estimation of the first few of the kernels from the measured input/output time-histories.
Though an accurate estimation of the first few kernels are shown to be sufficient to predict
the system response with reasonable accuracy, the algorithms are prone to measurement
noise.

Lastly, the literature contains recursive methods used in the identification of bilinear
systems. Again, exploiting the property that bilinear systems can be treated as linear, time-
varying systems, various recursive least square algorithms have been proposed by researchers
most of which yield unbiased estimates for the system parameters, Ref. [71-74].

In conclusion, there exists a need for an algorithm that can accurately identify a bilinear
system such that (i) it allows for the design of the input excitation without putting strict
restrictions on the type of excitation used, (ii) requires a single experiment, and (hi) is
applicable to all types of bilinear systems.

1.3 Observer/Kalman Filter Identification (OKID)

The proposed methods for the identification of time-invariant bilinear systems rely on the
accurate identification of equivalent linear models (ELM). Therefore, the methods involve
linear, time-invariant (LTI) system identification algorithms. Although the first method
can be coupled with any LTI system identification method, Observer/Kalman Filter Iden-
tification (OKID) has been preferred for its high robustness against noise. In this section,
OKID is briefly introduced with due emphasis on the parts closely related to the proposed
method to familiarize the reader to its judicious usage in the chapters to follow. Further
details regarding OKID can be found in Ref. [2; 3].

Consider a finite dimensional, discrete-time, linear, time-invariant system as shown in
Eq.(1.34).

x(fc + 1) = Ax(Ib) + Bu(Zc)
(1.34)

y{k) = Cx(k) + Uu{k)
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where k = 0, 1, 2, ..., Z — 1 and all other the symbols maintain their predefined meanings. For
zero initial conditions, x(0) = 0, one can express the output time-history as in Eq. (1.35)

where

y = YU

y y(0) y(l) y(2)

Y=D CB CAB

¦· y(p) ··· Y[I-I)

CAP-1B CA'-2B

(1.35)

(1.36)

(1.37)

U

u(0) u(l) u(2)
u(0) u(l)

u(0)

u(p)
F - 1)
F - 2)

u(0)

u(Z - 1)
u(Z - 2)
u(l - 3)

u(Z -p-1)

(1.38)

u(0)

The matrix Y in Eq.(1.37) contains the Markov parameters of the LTI system defined in
Eq. (1.34). For a finite dimensional linear system, the Markov parameters are unique. Once
the Markov parameters are identified, the extraction of the system matrices A, B, C, D
can be accomplished as described in Ref. [75; 76] by the Eigensystem Realization Algorithm
(ERA) or Eigensystem Realization Algorithm using Data Correlation (ERA-DC), which are
methods derived from the System Realization Algorithm proposed in Ref. [I].

Eq. (1.35) contains more unknowns (r ? ml) than equations (rxl), therefore, it cannot be
readily used to solve for the system Markov parameters Y. However, for an asymptotically
stable LTI system, the spectral radius of the matrix A is less than 1, therefore, CAfeB « 0,
VZc > p, for large enough p. Thus, the first ? Markov parameters Y can be approximated
using

Y = ^U+ (1.39)

where

D CB CAB CAP-1B (1.40)
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U

u(0) u(l) u(2)
u(0) u(l)

u(0)

u(p)
u(p - 1)
u(P - 2)

u(l - 1)
u(/ - 2)
u(/ - 3) (1.41)

u(0) ··· u(/-p-l)J
and + denotes the Moore-Penrose pseudoinverse. For lightly damped structures such as
Aerospace or Civil Engineering structures, the length of the required input-output mea-
surement I and the number of non-negligible Markov parameters ? are still so high that
the size of the matrix U becomes too large to calculate its pseudo-inverse. Moreover, for a
unique solution, the matrix U should be full-rank, and if u(0) = 0, this cannot be satisfied.
Besides, the formulation is valid only for the case of zero initial conditions.

In close resemblance to an observer equation, the following algebraic manipulation yields
an equivalent LTI system with more inputs and the same outputs, but has a customizable
decay rate which can be used to shrink the size of the matrix U:

x(k + 1) = Ax(A;) + Bu(A;) + My(A;) - My(A;)
= (A + MC)x(Jt) + (B + MD)u(A;) - My(A;)

Tu(A;)'
= (A + MC)x(A;) -

= Ax(A;) + Bv(A;)
y(fc) = Cx(A;) + Du(A;)

where M is an arbitrary ? ? q matrix, and

(B + MD) -M
y(*0

(1.42)

A = A + MC

B

v(A;) =

B + MD -M

U(A;)'
y(fc)

(1.43)

(1.44)

(1.45)

The manipulation above is really an effort to form a deadbeat observer to place all
eigenvalues of Ä at the origin, as detailed in Ref. [8]. Thus, CÄ'B = 0 for i > p. The
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so-called observer Markov parameters, which are the Markov parameters of the equivalent
system defined in Eq.(1.42), can be determined from Eq.(1.46)

Y = yV+

where

y =

Y =

y(0) y(l) y(2)

D CB CAB

u(0) u(l) u(2)
v(0) v(l)

v(0)

y(p) ¦

CAP-1B

u(p)
v(p-l)
v(p-2)

y(i - 1)

(1.46)

(1.47)

(1.48)

u(l - 1)
v(¿ - 2)
v(¿ - 3) (1.49)

v(0) ··· v(l-p-l)
Once the observer Markov parameters are determined, the system Markov parameters
can be determined using a recursive formulation. For non-zero initial conditions, the in-
put/output relationship for the system defined in Eq.(1.42) can be expressed as in Eq.(1.50)

where

y =

X =

Y =

V =

y = CAp;r + yv

y(p + i) y(p + 2) ··· y(/-i)_
x(0) x(l) ¦¦ -x(l-p -2)

D CB CAB CAP-1B)

u(p+l) u(p + 2) ··· u(Z -1)
v(p) v(p+l) ··· v(Z -2)

v(p-l) v(p) ··· v(Z -3)

(1.50)

(1.51)

(1.52)

(1.53)

(1.54)

v(0) v(l) ··· v(Z-p-2)J
Since, by definition Äp « 0 and {x(k) : ||x(fc)|| < oo,V/c > 0}, the term CAPX in Eq.(1.50)
can be neglected as in Eq.(1.55).

y = YV (1.55)
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The observer Markov parameters can be obtained using Eq. (1.56).

(1.56)

Note that, for a unique solution, the matrix V must have unique inverse, which is only
possible if it is full rank. Otherwise, although the identified Markov parameters will be able
to reproduce the measured output via Eq.(1.55), they will not be able to predict the output
time-history correctly, when the input is different. As in the case of the proposed methods
of bilinear system identification, if the input excitation is sinusoidal (i.e. not rich), due to
the row shifting involved, the matrix V has a tendency to have some of its rows linearly
dependent. One way of handling this problem numerically is by adding a subtle amount
of White Gaussian Noise (WGN) on the input so that V is full rank, but the change in
Y is negligible. Another approach is to minimize the number of row-shifts by keeping the
integer ? to a minimum. The lower bound on ? can be derived from a relationship between
the observer Markov parameters and system Markov parameters.

For this purpose, the observer Markov parameters can be partitioned as follows:

Y-i Yo Yi Yp-I

where

CAfeB

C(A + KC)'(B + KD) -C(A + KC)^M
/c = 0, 1,2...v(i) v(2)

Yj-1) = D

(1.57)

(1.58)

(1.59)

(1.60)

(1.61)

As also presented in Ref. [8], the system Markov parameters can be obtained from the
recursive relationship:

fc-l

Y^Yf' + EYf^-i-i+Yf'D (1.62)
i=0

To impose the lower bound on p, the relationship between observer Markov parameters
and system Markov parameters should be viewed as follows:

?(2)? = ? (1.63)
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where

?(2) =

H =

Y =

-Y.(2)
p-1

Yl Y2

Y2 Y3

Yp Yp+ 1

.?(2) r(2)

YP+i ¦p+l

p-2 1O

··· YiV

• · · Yw+i

YjV+p+1

Yp+ 1

(1.64)

(1.65)

(1.66)

and ./V is a sufficiently large arbitrary integer, while H is the generalized Hankel matrix. The
rank of a sufficiently large H is equal to the order of the both controllable and observable
part of the system to be identified n. The matrix H is of size qp ? Nm. Assuming Nm > qp,
the rank of H is at most qp. Thus, in order to be able to solve for Y'2) uniquely, ? should be
chosen such that qp > n. This condition imposes the lower bound on the smallest possible ?
as the number of outputs times ? must be greater than or equal to the order of the system.

1.4 Organization of the Thesis

In this chapter, the reader is first introduced to bilinear systems. Various definitions, a
stability criterion for the case of periodic excitations, sufficient conditions for observability
and controllability, several fields of applications and frequently cited bilinear system identi-
fication methods are presented. Lastly, an LTI system identification algorithm called OKID
is introduced for reference in Chapter 2.

Chapter 2 discusses the first proposed method for the identification of single-input,
multi-output, discrete-time, bilinear systems that uses the steady-state portion of a single
input/output time-history obtained by exciting the system with a linear combination of
sine and cosine functions of user-selected frequencies enriched by a subtle amount of white

Gaussian noise. The method relies on the conversion of the bilinear system into an equivalent
linear model (ELM) by an accurate approximation of the state in the bilinear term using
a set of sine and cosine basis functions. The frequencies of these functions are obtained

using perturbation theory. The equivalent linear model can be identified using one of the
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available algorithms for the identification of LTI systems (e.g. the OKID algorithm), and
from this identified ELM, the original bilinear system can be recovered. The method can
be generalized to multi-input system by increasing the number of experiments needed.

Chapter 3 presents the second proposed method for the identification of single-input,
multi-output, discrete-time, bilinear systems using the steady-state portion of a single in-
put/output time-history measurement. Similar to the first approach, the bilinear system
is excited by a user-designed input in the form of a linear combination of sine and cosine
functions, enriched by a subtle amount of highband random component, where the user is
given the freedom of selecting the frequencies and amplitudes of the sine and cosine func-
tions besides the amount of the added random component. The obtained ELM is converted
to a new, overparameterized ELM using its past input/output time-history as its original
state time-history. The order of the new ELM is reduced by discarding its unobservable
states. Since the state time-history of the ELM is (known and) common to the original
bilinear model, the original bilinear system matrices are recovered via a least-square fit.

Chapter 4 explains the third proposed method for the identification of single-input,
multi-output, discrete-time, bilinear systems using the steady-state portion of a single in-
put/output time-history measurement. As in the previous method, the bilinear system is
fed a linear combination of sine and cosine functions, enriched by a subtle amount of high-
band random component. By choosing the frequencies of the sine and cosine functions and
the amount of highband random component, the user designs the excitation input. To be
valid for the specific input/output time-history, the bilinear model is converted to an ELM
by representing the state in the bilinear term as a linear combination of sine and cosine
basis functions, where the frequencies of these basis functions are selected via perturbation
theory. The identified ELM is used to generate an approximation of the time-history of
the state. Then, perturbation theory is used to generate a recursive relationship in every
iteration of which the error in the identified state drops exponentially. Once the error in
the identified state drops to a sufficiently negligibly small number, the corresponding ELM
is used to identify the bilinear system.

Chapter 5 is devoted to the conclusions and remarks on future research.
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Chapter 2

Identification of Bilinear Systems Through

Equivalent Linear Models via Observer/Kalman
Filter Identification (OKID) Algorithm

This chapter presents the first proposed method for the identification of single-input,
multi-output, time-invariant, discrete-time bilinear systems using the steady-state portion
of single-input, multi-output time-histories obtained by exciting the system with a linear
combination of sine and cosine functions, of user-selected frequencies, enriched by a subtle
amount of white Gaussian noise (WGN). The method relies on the conversion of the bilinear
model into an equivalent linear model (ELM) by an accurate approximation of the state in
the bilinear term using a set of sine and cosine basis functions whose frequencies are obtained
from perturbation theory. The addition of the random component (RC), along with a step
in which the columns of the ELM matrices which correspond to the dependent rows of the
input vector are compressed into single columns, serves for obtaining an input vector with
linearly independent rows. Lastly, the ELM is identified using an LTI system identification
algorithm called Observer Kaiman Filter Identification (OKID), and the bilinear model is
retrieved from the identified ELM.
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2.1 Notation and Basic Formulation

Consider a single-input, multi-output, time-invariant, discrete-time bilinear system rep-
resented by a state-space model of order ? as follows:

x(fc + 1) = Ax(Jc) + Bu(fc) + Nx(fc)tt(fc)

y(fc) = Cx(k)+Ou(k), k = 0, 1, ...,s,s + 1, ...,I

where k denotes the time-step, t is the time sampling interval such that x(fc) implies x(A;r),
x(fc) G W1 is the state vector, u[k) e E is the excitation input, while y(k) G Rr represents
the t ? 1 output vector. A G Knxn represents the state matrix, B G W1 is the ? ? 1 input
matrix, C G Rrxn is the output matrix, D G W is the direct transmission matrix and
N G Rnxn represents the matrix that weighs the bilinear term x(k)u(k). The steady state
portion of the signal is assumed to start at the sth time-step and the record of input/output
time-histories end at the Ith time-step.

2.2 Linearization of The Bilinear Problem

Let's first define the excitation input to be used in the identification as
/ /

u{k) — 2_\ ai cos(w¿/ct) + NJ bi sm(ujikr) (2.2)
¿=o ¿=i

where a¿, o¿ G K and k = 0, 1, ..., I. The amplitudes a¿, 6¿ and frequencies ?, (i = 0, 1, .., /)
are chosen by the user, and the frequencies can be grouped in a set denoted by O? =
{(jjQ,tJi,...,ujf}, where ?? = 0. The input defined in Eq. (2.2) is applied to the bilinear
system defined in Eq. (2.1). and the time-history of the output vector is recorded.

For this specific input excitation. Eq. (2.1) can be reduced to an ELM capable of re-
producing the steady-state portion of the recorded output time-history. Such an ELM is
obtained by approximating the state x(fc) in the bilinear term Nx(fc)u(fc) using a set of sine
and cosine basis functions whose frequencies are obtained by perturbation theory.
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2.2.1 Perturbation Theory

Perturbation theory can be used to find an approximate solution to a problem that has
no analytic solution by adding corrections to the closed-form solution of a related problem
if the related problem is convertible to the original one by addition of a perturbation term.
The approximate solution is written as a truncated power series in terms of the parameter
e e K, which controls the magnitude of the added perturbation term and corrections.

In the case of the bilinear system defined in Eq.(2.1), a closed-form solution to the
state exists for the linear system associated with it; and a perturbation eNx(k)u(k) can be
added to it as in Eq. (2.3). Thus, the solution to the state of the bilinear system can be
approximated in the form of a power series in the parameter e, as in Eq. (2.4)

x(fc + 1) = Ax(Zc) + Bu(fc) + eNx(fc)u(Jfe) (2.3)
oo JV

¿=0 ¿=0

where x0(k) e M.n is the solution to the linear problem obtained by setting e = O; X^k)
(i — 1,2,..., N) are the basis functions in terms of which the state x(fc) is expressed; the
term ß?? (k) is the ith order correction, and S f%x.(k) is the Nth order approximation to
the solution of the state vector x(/c) in Eq. (2.1).

Plugging Eq. (2.4) into Eq. (2.3) and equating the terms with equal powers of e yield the
set of equations in Eq. (2.5), which will be used to obtain a set of basis functions X¡{k) to
approximate the state.

Xo(k + 1) = AXo (k) + Bu(k)
X1 {k + 1) = AXl (k) + NXo(k)u(k)

X3(k + l) = Ax9{k) + NXl(k)u(k) (2.5)

XN(k + 1) = AxJk) + NxN^(k)u(k)
Starting from the first and moving to the next, a closed-form solution can be written for
each linear equation. Recalling the form of the input excitation u(k) in Eq.(2.2), one can
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write ? (k) (k > s) asa linear combination of sines and cosines of the set of frequencies
O?· Furthermore, using the trigonometric identities in Eq.(2.6), where a, ß e K are any
two scalars, the particular solution of X1(Ic) can be written as a linear combination of sines
and cosines of a set of frequencies O?, where O? contains the sums and differences of the
frequencies in O? with each other.

cos(a) cos(/3) = [cos(a - ß) + cos(a + ß)]/2

sin(a) sin(/?) = [cos(a - ß) - cos(a + ß)] /2

sin(a) cos(/3) = [sin(a + ß) + sin(a - ß)}/2

cos(a) sin(jS) = [sin(a + ß) - sin(a - ß)}/2

(2.6)

Similarly, for k > s, X2(k) can be written as a linear combination of sines and cosines
of a set of frequencies O2, where O2 contains the sums and differences of the frequencies

in O? with the frequencies in O?. This reasoning can be extended to xN(k) and O;? to
conclude that, if Eq. (2.4) is true, then the steady-state portion of the state vector x(fc) can
be approximated by a linear combination of sines and cosines of the frequencies from the set
O = {O? U O? U ... U Oa?} = {0,??,?2, ...,??}. Hence, the state vector x(fc) for the bilinear
system in Eq. (2.1) can be represented in the steady-state condition as follows:

x(fc)

(xi(k)\
x2(k)

\Xn(k)J

A#(/c) =

??? ???

^20 ?2?

? 1(29)

V2(2g)
ÍMk)\

F??
k = s,s+l,...,l (2.7)

_?«0 Kl ¦¦¦ K(2q)\ \<t>2q(k) J
where Xi(k) e R is the ith component of the state vector x(fc) (i.e. the ith state), ^o (^) = I5
4>i(k) = sm(uikr) while «¿»,+¿(A;) = cos(w¿fcr) for i = 1,2,. .,q. The vector F(&) e IR(29+1Í
represents the vector of the aforementioned basis functions, and ? € ???(29+?) is the matrix
containing the coefficients multiplying the basis functions.

Substituting Eq.(2.7) into the state x(k) in the bilinear term Nx(fc)u(/c) of Eq.(2.1)
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yields the following ELM:

x(A; + 1) = Ax(fc) +

= Ax(Ib) +

y(A) = Cx(fc) +

where Oe IRrx(29+1).

B N

B NA

D 0

u(k)
x(k)u(k)

u(lfc)

9{k)u(k)J

u(k)
F(?)?*(?)

(2.8)

k = s, s + 1, ...,I

2.3 Identification of the ELM

Although the ELM in Eq. (4. 15) is capable of reproducing, for the same input, the same
output as the bilinear system after the steady-state is reached, such an ELM cannot be
identified uniquely because, at least, the first two rows of its input vector are linearly
dependent, as shown in Eq. (2.9)

<]>o(k)u(k)
¿i(fc)u(fc)

u(k)

MkHk)1

I u(k) \
u{k)

<t>i(k)u{k) (2.9)

\4>2q{k)u(k)) \cj>2q(k)u(k)J
However, this problem can be fixed by compressing the columns of the system matrices
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that correspond to the repeated rows of the input vector into single columns as follows:

/ u(k) \
x(fc+l) = Ax(fc) + B + NAi NA2

ii(Ä)u(fc)

/

y(fe) = Cx(A;) + D 0

\<hg(k)u(k)J
u(k) \

(2.10)

4>i(k)u(k)
k = s, s + 1, ...,/

^2q(k)u(k)J
where 0 G JRrx(2«), A1 G W1 is the first column of the coefficient matrix A, and A2 G RrtX(2<?)

A2 . To identify the ELM inis the matrix of the remaining columns so that A =
Eq.(2.10), one needs to build the input vector time-history numerically and feed it, along
with the recorded output-time histories, to a linear system identification tool. This tool
should demonstrate robustness against noise (both measurement and process noise), as
there will be a certain amount of numerical noise that depends on the value of N chosen in
truncating the power series in Eq.(2.4), even if the record of the input/output time-histories
contain no measurement noise.

In the bilinear system identification approach proposed here, the Observer Kaiman Filter
Identification (OKID) is used for its robustness against measurement and process noise. The
details regarding OKID were already discussed in the section 1.3, on page 15. One of the
steps of the OKID algorithm requires the matrix V in Eq. (1.50), which corresponds to the
matrix V in Eq.(2.11), to be full rank

/#(s + p + l)-u(.s+p+l) F(?+? + 2)?(d + ? + 2) ··· F (I - l)u(l - 1)\
&{s+p) *(s+p+l) ··· F(1-2)

V{s+p-l) V(s+p) ¦·· F(?-3)V =

F(ß) F(ß + 1) *(¿-p-2) J
(2.11)
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where

*(k) = , (2-12)
V y(fc) /

as shown before, the parameter ? G Z+ must be greater than or equal to the product of the
number of outputs r and the user's guess for the order of the system. This requirement is
typically satisfied by using an input "rich" enough in terms of frequency content, together
with sufficiently long time-history records. Yet, in the proposed formulation, it is very
difficult to satisfy the richness. condition in order to uncorrelate the rows of V in Eq.(2.11).
Increasing the frequency content of the excitation input leads to the generation of new basis
function frequencies ó)¿, in accordance with Eq.(2.5); consequently, it increases the number
of rows of F(&), and therefore, the number of rows of V. Thus, due to the identities in
Eq. (2.6), some of the rows of the matrix V may remain or become linearly dependent or
numerically close to being so.

In order to maintain the linear dependence between rows of V, it is enough to add a
subtle amount of random component (RC) in the form of white Gaussian noise (WGN) to
the input time-history u(k) to make sure that the matrix V is full rank. Hence, the final
form of the excitation input becomes

û(k) = u(k) + wgn(fc) (2.13)

where wgn(fc) stands for the faint amount of WGN added. The precise amount of the WGN
depends on the specifics of the problem in question such as on the parameter ? in the matrix
V that controls the number of shifts, which inherently depends on the number of outputs
r and on the order of the system to be identified, n, through the requirement ? > rn, on
the number of basis functions preferred, on the frequency ranges the excitation input and
basis functions cover, and so forth. Although Eq. (2. 13) adversely affects the error made
in approximating the state in Eq.(2.7), with the assumption that the excitation input is of
the form given in Eq.(2.2), the increase in the error is not significant, since the amount of
added RC is quite small. In addition, the robustness of OKID in handling noisy data and
the ability of the basis functions to absorb the unaccounted changes in the state vector due
to the added RC contribute to keep the overall identification error low.
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In summary, the bilinear system to be identified is excited with an input û(k) of the
form elaborated in Eq. (2. 13) and (2.2) (i.e. a combination of sinusoidal functions with a
small random component), and the output time-history is recorded. Next, the input time-
histories for <&(fc)û(fc) are numerically generated to serve as the input vector of the ELM.
Finally, the steady-state portions of the numerically generated input time-histories and of
the recorded output time-history are fed into OKID to identify the corresponding ELM
from which the bilinear system will then be recovered.

2.4 Recovery of the Bilinear System from the Identified ELM

Let Aok G Rnxn, Bok e R«x(2<7+i); cok G M.rxn, Ook G K'rxl, be the identifed ELM
matrices obtained using OKID, and x0k(k) G M.n be the corresponding state vector so that

¦x.ok{k + 1) = Aofcxofc(fc) + Bok&(k)u(k)
(2.14)

y(fc) = CokKok(k) + Ook&{k)u(k)

Let also T G M.nxn be an invertible coordinate transformation matrix as in Eq. (2. 15), which
allows the transformation from the state vector of the ELM identified by OKID to the
original state vector of the bilinear system.

xok(k) = Tx(fc) (2.15)

Then, the bilinear system in Eq.(2.1) can be transformed into Eq.(2.16):

xok(k + 1) = Äxofc(fc) + Bu(fc) + Ñxok(k)u{k)
(2.16)

y(A) = Cxofc(/c) + Du(fc), k = 0, 1, ..., s, s + 1, ..., I

where Ä G Mnxn, B G Knxl, Ñ G Rnxn, C G Rrx" are the system matrices in the same
coordinates as the identified ELM, and

A = T-1AT

B = T1B
(2-17)

N = T-1NT

C = CT
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Note that both Eq.(2.1) and (2.16) define the same input/output mapping, and in accor-
dance with Eq. (2. 7), the state vector of the identified ELM x0k(k) can also be expressed as
follows:

xok(k) « ?F(&) (2.18)

where ? = ?? is the matrix of the coefficients that multiply the vector of basis functions
F(?).

Then, to conclude the identification, the set of equations in Eq. (2. 19) can be used to
recover the bilinear system in Eq. (2. 16) from the identified ELM

Ñ = (Bofc)2A+
B = (B0O1 - NA1 (2.19)
C = C0A:

D = (D0Jb)1

where ??, (B0Jt)1, (D0Jt)1 are the vectors formed by the first columns of the matrices A,
B0fc, D0Jt respectively, while A2, (B0Jt)2 are the matrices formed by their remaining columns
such that A = A2 ! Bofc = The superscript + indicates the Moore-[(Bofc)i (B0fc)2
Penrose pseudoinverse. To utilize Eq.(2.19), A should be determined first. This can be
achieved by using the identified ELM as a state generator for X0^(A;) by feeding it back the
same input time-history it was identified with:

1 +
A = x0fc(s) x0/t(s + l) XOk(I)] F(ß) F(ß+1) F(?) (2.20)

Note that both the identified bilinear system and the original bilinear system represent
the same input/output mapping, even though the identified matrices A, B, Ñ, C are not
the same as the original system matrices A, B, N, C, respectively.

2.5 The Effect of The Parameters The User Can Choose

In the implementation of such an identification approach, certain parameters have to be
selected by the user. In this section, the analyses of the effects of each parameter on the
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identification results are presented.

2.5.1 Length of Input/Output Time-Histories

The effect of using a longer input /output time-history record is two-fold. On one hand,
a longer data set helps reducing the ill-conditioning of the matrix V in Eq.(2.11), and
therefore, enhances the accuracy of the identification by diminishing the required amount
of WGN to be added to the input. On the other hand, the approximation error made in
Eq.(2.7) gets larger because the truncation in Eq.(2.4) leaves out some of the frequencies
that should actually be in the set of basis function frequencies. Therefore, as the data
length increases, the limited ability of the basis functions to compensate for the missing
basis functions becomes more evident. This phenomenon can be better understood through
a simple, non-dimensional example. Consider the following signal:

y{k) = sin(2fcr) + sin(3/cr) + sm{4kr) (2.21)

where the sampling interval t = 0.01. The signal is approximated by y(k) which is a
linear combination of sines and cosines of the set of frequencies {1, 2, 4, 5, 6, 7} obtained by
performing a least square fit over the following data lengths: I = {400,500,1000,2000}.
Fig.2.1 shows that the quality of the fit deteriorates as the length of the data set increases.
The declining accuracy in the fit is due to the fact sin(3fcr) is present in y{k) but not
present in the set of sine and cosine basis functions from which y(k) is formed, and as the
data length increases this fact becomes more and more evident from the increasing equation
error in the least square fit.

2.5.2 Amount of Random Component

Similar to the effects of the data length, the effect of adding a certain amount of RC in
the form of WGN to the sinusoidal input u(k) is twofold. In fact, while the addition of a
higher amount of RC makes the matrix V in Eq. (2. 11) less ill-conditioned, and therefore,
improves the quality of the identification, it also increases the approximation error made in
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Figure 2.1: The Performance of Least-Square Fitting For Different Data Lengths
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Eq.(2.7), since the finite set of basis function frequencies cannot include all of the frequencies
contained by the RC.

Let's illustrate this point through a dimensionless example. Consider a single-input,
single-output (SISO), single-state bilinear system of the form in Eq.(2.1), where the system
matrices are as defined in Eq. (2.22).

A = 0.85, B = 0.2, N = 0.2, C = I, D = 0.1 (2.22)

For comparison purposes, 4 different states xHC(fc) and outputs yRC(k) are simulated by
feeding 4 corresponding inputs ûRC(k) constructed in accordance with Eq.(2.23) and (2.24).

u(k) = sin(5fcr) + sin(7fcr) + sin(12fcr) (2.23)

ûRC(k)=u(k)+wgnRC(k) (2.24)

where k — 1,2, ...,5000, the time-step at which the steady-state starts is s = 305, and
the time-step at which the input/output record ends is Z = 5000, with a sampling period
t = 0.01. The function u(k) is the base input signal before enrichment and it is modified by
adding WGN via the function wgnRC(k), with the percentage RC representing the ratio of
the root-mean-square (RMS) of the added WGN noise to the RMS of the base signal u(k).
In this example, the values of RC is equal to 0%, 0.0005%, 0.05%, 5% have been used. RC is
used as a subscript to denote the associated input, output and state with the corresponding
amount of RC. The matrix V is formed for each case for perturbation order N = 2 and the
number of row-block shifts ? = 2.

Fig. 2.2 shows the plots of the singular values of the matrix V from which the reduction in
the level of ill-conditioning can easily be deduced by observing that the singular values close
to zero (i.e. those causing ill-conditioning) start approaching the highest singular values as
the added RC is increased. This observation can be quantified by calculating, the 2-norm
condition number of V, which is defined as the ratio of the highest singular value to the
smallest singular value and used it as a quantitative measure of the ill-conditioning. Table
2.1 shows the 2 norm condition numbers of V, denoted by ^(V), for the cases presented
in Fig.2.2.
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RC K2(V)
0%

0.0005%

0.05%

5%

5.4053el4

9.3999e5

9.4021e2

9.4216el

Table 2.1: The effect of different amounts of RC on the condition number of K2V

The adverse effects of the RC on the approximation error of the state in Eq. (2.7) can
be quantified by comparing the steady-state portion of the simulated state xHC to its rep-
resentation in terms of the basis functions, xHC%, through an error function defined as in
Eq.(2.25)

«™(*„.«,)- "1^SL- y (2.25)RMS(X„)
where

since

Xfl<7 — XHC* *

xÄC = ?F

xRC = ?F

(2.26)

(2.27)

and

F

x*c(0
(2.28)[xRO(s) xHC(s + l) ···

[f(d) F(d + 1) ··· F(0
It can be inferred from Table 2.2 that, as the amount of RC increases, the state approxi-
mation error increases as well.

2.5.3 OKID Related Parameters

The most important OKID parameter that affects the computational cost and the per-
formance of this method is the number of time-steps p, since the matrix V, which needs to
be invertible for a unique solution, contains p+ 1 many shifted row-blocks, each of which may
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RC error (xRC%,ícRC%)
1% 3.71%

2% 3.76%

3% 3.84%

4% 3.96%

5% 4.10%

Table 2.2: The effect of different amounts of RC on the state approximation error

contain rows that are linearly dependent due to the identities in Eq. (2.6). Hence, keeping ?
to a minimum is essential to avoid ill-conditioning of the matrix V. As discussed earlier in
subsection 1.3, the requirement for minimum ? is such that the number of inputs times ? is
greater than or equal to the order of the system to be identified. As an illustration of this
discussion, Fig.2. 3 provides the singular value plots of the matrix V, for various values of p,
for the example problem discussed above, setting RC — 1% and perturbation order N = 2.
It can be observed that as ? increases, (i) although the largest singular value does not
change significantly, the smallest singular value gets smaller in value, and (ii) the number
of singular values close to the smallest singular value increases. Both of these observations
imply that V gets more ill-conditioned, as ? increases. The corresponding 2-norm condition
numbers of V, denoted by K2(V), are tabulated in Table 2.3.

P K2(V)
1 322.2

2 417.3

3 493.2

4 560.4

Table 2.3: The effect of ? on the condition number of V

On the other hand, a higher value of ? allows OKID to remain robust under higher
amounts of noise, which also includes the process noise due to the approximation error in
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Eq.(2.7).

2.5.4 Perturbation Order N

The use of a higher perturbation order TV improves the quality of the approximation
of the state in Eq.(2.7) by increasing the number of basis functions used. For the example
problem given above, setting RC = 1%, the steady-state portion of the simulated state x1%
can be compared to its representation in terms of the basis functions, x1%, through the
error function defined in Eq.(2.25), for different perturbation orders N = 2,3,4,5. Fig.2.4
and Table 2.4 present the result of such a comparison, indicating that a higher perturbation
order TV significantly reduces the approximation error of the state in Eq.(2.7). Furthermore,
the reduction in error is not due to the enhancement of the quality of the approximation of
the state over a specific time interval but over the entire time interval in a global sense.

N error(x1%,xl%)
1 36.69%

2 12.87%

3 3.63%

4 0.95%

Table 2.4: The effect of the perturbation order N on the state approximation error

On the other hand, a higher perturbation order N may cause the matrix V to become
more ill-conditioned by leading to the generation of more basis functions. The vector of basis
functions F(&) is multiplied by the input, which is formed by taking a linear combination
of a subset of the set of basis functions, to form a row block, and the matrix V is formed
by shifting the row-blocks. As a result, in accordance with Eq. (2.6), as the number of basis
functions increases, the possibility of having linearly dependent rows in V also increases.
Extending the previous example to illustrate this reasoning, the singular value plots of the
matrix V for RC = 1% and ? — 2 are formed for the perturbation orders N = 1,2,3,4
respectively, as shown in Fig.2.5. The 2-norm condition numbers K2CV) are presented in
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Table 2.5 for each of these cases. The results indicate that, as the perturbation order N is
increased, the matrix V becomes more ill-conditioned.

N K2(V)
1 256.0

2 371.2

3 348.9

4 380.7

Table 2.5: The effect of the perturbation order N on 2-norm condition number of the matrix
V

2.5.5 Choice of O0

The input excitation frequencies should be chosen from a range that would allow the
system dynamics to be observed, as in the case of linear system identification problems.
However, unlike linear systems, increasing the number of excitation frequencies does not
only make the input look "richer" (i.e. less periodic and so more desirable), but also
increases the number of basis function frequencies obtained from perturbation theory.

Moreover, a set of O? formed by randomly selected frequencies is found to be more
successful in avoiding the numerical ill-conditioning of the matrix V than one consisting
of evenly spaced frequencies. Thus, O? should ideally be comprised of randomly selected
frequencies. This behavior is due to the fact that a signal comprised of evenly spaced
frequencies does not exhibit a rich behavior as much as a signal formed by randomly spaced
frequencies. As an illustration of this discussion, consider two signals uT(k) and ue(k)
formed by

10

ur(k) = V^sin(i^fcr)
To' (2·29)

uc(k) = y ^siníEjkr)
i=l
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where k = 1, 2, ..., 2000, and the sampling period is t = 0.01. The number set E = {5.0000,
8.3333, 11.6667, 15.0000, 18.3333, 21.6667, 25.00004, 28.3333, 31.6667, 35.0000} is a set
of evenly spaced frequencies from the interval [5,35], while R = {6.8175, 11.8369, 12.4375,
13.3475, 14.0865, 15.1725, 19.6034, 20.8193, 21.8381, 33.3887} represents a set of frequencies
selected randomly from a uniform distribution defined in the same interval [5,35]. Fig.2.6
depicts that ur{k) exhibits higher richness than ue(k).

2.6 Numerical Example

Let's illustrate the proposed method through the analysis of a non-dimensional example.
Consider a bilinear system of the form in Eq. (2.1), where

0.9924 0.0118

-1.1778 0.8747
,B =

0.0126

0.0042
,N

0.2000 0

0 0.2000 (2.30)
C 1 2 ,D -1.2000

the number of inputs is m = 1; the number of outputs is r = 1, and the order of the system
considered is equal to ? — 2. Hence, the minimum choice for the OKID parameter ? is
2, since rp > n. In addition, choosing ? = 2 will allow us to keep the dimensions of the
matrices small, in this numerical example.

Let's choose the sampling period r to be equal to 0.01 seconds for a set of input/output
measurement time-histories of length 20, 000 time-steps. The steady-state portion of the

3

response is assumed to start at time-step s = 748, since G] (A + Nu(fc)) < Ie - 20 for
s < j < 20, 000. In an actual identification task some a priori knowledge of the system
is necessary for such an assumption to be valid. The set of frequencies O? and the cor-
responding amplitudes a¿, 6¿ used in constructing the base input excitation signal u(k) in
accordance with Eq. (2.2) are tabulated in Table 2.6.

The excitation input U(A;) is obtained by adding a RC in the form of WGN to the
previously defined u(k) as described in Eq. (2. 13). The amount of the added RC is chosen
such that the ratio of the RMS of the added WGN to the RMS of u(k) is 3%. Previously, it
was discussed that the main motivation behind the addition of the RC was to eliminate the
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bi iüj(rad/second)
0 0.0000 0.0000

1 0.0936 0.0633 6.5624

2 0.0836 0.0828 7.3933

3 0.0992 0.0681 14.5528

4 0.0745 0.0890 15.9935

5 0.0774 0.0645 19.8812

6 0.0704 0.0525 20.7882

7 0.0786 0.0679 26.4501

8 0.0639 0.0918 28.7872

9 0.0637 0.0934 32.3738

10 0.0676 0.0891 32.7644

Table 2.6: The value of the parameters used in the construction of the base input signal
u(k) described in Eq. (2.2)

ill-conditioning in the matrix V shown in Eq.(2.11). Therefore, the choice of the amount
of RC strongly depends on V. However, in order to construct V, the output y(A;) needs
to be known in advance. A more careful inspection of the structure of V hints a way out
of this problem. The main source of the ill-conditioning is not due to the rows involving
y(s + ? - i) (i — 0, 1, ...,p), but rather due to the rows containing F(ß + ? — i)u(s +? — i)
(i = —1,0, .··,£>) which may become linearly dependent due the identities in Eq.(2.6). In
addition, the number of rows related to the output make up only a very small percentage of
the total number of rows in V (e.g. for this example, even for the perturbation order N — 2
and the OKID parameter ? = 2, they make up merely 3 of the 887 rows). Thus, a modified
version of the matrix V, where the rows related to the output are eliminated, can be used
to predict a sufficient amount of RC rather accurately. While Fig. 2. 7a shows the plots of
the singular values of such a matrix ?f, defined in Eq. (2.31), before and after addition of
the RC, Fig. 2.7b shows the same plots for the matrix V that is formed by OKID. Two
results are immediately conceivable from these plots. First, prior to the addition of the RC
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both ?? and V suffer from the same order of ill-conditioning, which can be quantitatively
observed by comparing their condition numbers 3.2362e+013 and 3.7096e+013 respectively.
Secondly, the addition of the 3% RC is sufficient for eliminating the ill-conditioning from
both ?f and V, as reflected by their condition numbers calculated after the enrichment of
the input as 0.9223e + 004 and 1.1657e + 004 respectively.

^(s + p + l)u(s+p+l) F(d+? + 2)?(5 + ? + 2) ·¦· F (I - l)u{l - 1) ^
F(?'+?)??(5+?) F(3+?+1)??(5+?+1) ··¦ F(1-2)?(1-2)

?F = F(ß+?-1)?(ß+?-1) F(d + ?)??(d + ?) ··· F(? — 3)ti(Z — 3)

^ F(ß)«(ß) F(ß + 1)«(ß + 1) ··¦ F(1-?-2)?(1-?-2))
(2.31)

At this point, after being sure that the selected input excitation input wil not make V
(or ?^f) ill-conditioned, the designed input excitation U(A:), presented in Fig.2.8, is fed to
the bilinear system, and the output y (A;) is obtained. Using perturbation theory, the vector
of basis functions F(?;) is formed for the perturbation order N — 2, and the input time-
history for the ELM F (Zc)U(A;) is generated numerically. This choice can be justified by the
fact that the basis functions generated for N = 2 can represent the steady-state portion of
the measured output time-history with an accuracy within the acceptable limit that allows
OKID to identify the ELM robustly. Although the basis functions are used actually to
represent the state, the output can still be used to roughly estimate the required number of
the perturbation order, since it contains contributions from at least one of the states which is
coupled with the rest of the states in the difference equation representing the bilinear model.
The contribution coming to the output from the term Du(A;) does not violate this reasoning,
as the set of frequencies present in u(k) is a subset of those present in the state x(A;) and the
added RC is subtle. As a demonstration of the above discussion, Fig. 2. 9 depicts the steady-

state portion of the time histories of the output y(A;) and its representation y(A;) in terms of
the basis functions F(?;). Moreover, the amount of mismatch between y(A;) and y(A;) can be
quantified using the error function defined in Eq.(2.25) as error(y(k), y (Jc)) = 4.8775%. The
validity of the discussion in terms of the output y(A;) can be better observed from Fig.2.10,
where the plots of the steady-state portions of time-histories of the second state x(A;) and its
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Figure 2.7: The plots of the singular values of the matrix ?f and V formed both before
and after the addition of RC
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Figure 2.8: The performance of least-square fitting for different data lengths
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Figure 2.9: The measured output time-history y(fc) and its representation y(k) in terms
basis functions <j)(k)
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representation x(/r) in terms of the basis functions are provided. The amount of mismatch
between them is calculated using error(x.(k), x.(k)) to be 6.6747% and 8.6145% for the first
and second states respectively, which are reasonably close to that for the output. The
steady-state portion of the time-histories of the numerically generated input for the ELM,
<&(fc)u(fc), and the measured output y(k) is fed to OKID to acquire the system matrices of
the corresponding ELM shown in Eq.(2.14). The time-history of the state x0fc(fc) and output
Yok(k) of the bilinear system in the coordinates of the identified ELM can be generated by
simulating the identified ELM using #(fc)u(fc). Fig.2.11 depicts the steady-state portion of
the measured output time-history against its reproduction by the ELM. The approximation
error between the two is calculated using error(y{k),y0k{k)) to be 1.9850%. As shown
both visually and numerically, the reproduced output time-history is virtually identical to
the measured output time-history. Then, the matrix of the coefficients ? is solved using
Eq.(2.20), and the identification of the bilinear system is concluded by retrieving the system
matrices using Eq. (2. 19) as

A =

C =

0.9673 -0.0784

0.1473 0.9008
B = ,N

0.1993 -0.0095

-0.0061 0.2039 (2.32)

-0.1013 -0.0776

0.3370

-0.8113

,D = 1.2000

As a measure of the accuracy of the identification, a new random input of length 20, 000
time-steps is generated from a Gaussian distribution with mean 0 and standard deviation
1. The generated test input Ut(k) is fed both to the original and the identified bilinear
systems and the corresponding output time histories, y((fc) and yp(k) respectively, are
obtained. Fig. 2. 12 shows the plot of the predicted output time-history yp(k) against the
actual output time-history yt(fc) with a prediction error of 0.9437% between the two. This
clearly shows that the predicted output yp(k) is a very accurate estimate of the output
yt(k) of the bilinear system. Furthermore, the original bilinear system matrices A and N are
related to the identified bilinear system matrices A and N respectively, through a similarity
transform as shown in Eq.(2.15) and (2.16). Therefore the eigenvalues of A, Ä and N, Ñ
need to be the same. For the example above, these eigenvalues are found to be {0.9336 ±
0.1022Í}, {0.9340 ± 0.1022Í} and {0.2000,0.2000}, {0.1937,0.2096}, respectively. Being
invariant against coordinate transformations, the direct transmission matrix associated with
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Figure 2.10: The time-history of the second state of the original bilinear system X2 (k) and
its representation X2 (k) in terms of the basis functions </)(k)
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Figure 2.11: The measured output time-history y(k) and its reproduction by the ELM
y0fc(fc) in terms basis functions (¡>{k)
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Figure 2.12: The predicted output time-history yp(k) and the simulated test output time-
history y*(fc)
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the original system D = 1.2000 and identified bilinear system D0^ = 1.2000 should be
the same, when there is no identification error. The "almost" perfect match between the
eigenvalues of the identified and original system matrices and the exact estimation of the
direct transmission term confirms the success of the identification.

2.7 Conclusions

As presented in the above example and the preceding explanation, the identification of
a discrete-time, time-invariant, state-space bilinear model can be converted to an ELM that
can reproduce the same output-time history as the original bilinear' system by expressing
the steady-state portion of the state in the bilinear term as a linear combination of sine
and cosine functions. The frequencies of the basis functions are selected in accordance
with perturbation theory. While the ELM is valid only for the specific set of input /output
time-histories, it can be used to extract the system matrices of the bilinear model. The
accuracy of the identified bilinear model is verified by the fact that it can accurately predict
the response of the original bilinear system subject to a new, randomly generated test
input. The aforementioned method differs significantly from the existing methods in the
literature by allowing for the design of the excitation input and by requiring only a single
set of input/output measurement time-histories. Furthermore, the effect of the parameters
selected by the user during the implementation of the method were discussed. It was
outlined that as the data length is increased, the state approximation error increases and

the ill-conditioning of the matrix V reduces. The amount of random component should
be high enough eliminate the ill-conditioning in V, but small enough to justify the use of
perturbation theory. The OKID parameter ? should be kept as small as possible to curtail
ill-conditioning, although a higher ? augments the robustness of OKID against measurement
and process noise. The choice of a randomly selected excitation frequencies were shown to
depict higher richness in comparison to evenly spaced input frequencies.
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Chapter 3

Identification of Bilinear Systems Through

Equivalent Linear Models via Data Driven Basis
Functions

This chapter presents the second proposed method for the identification of single-input,
multi-output, time-invariant, discrete-time bilinear systems using the steady-state portion of
a single input/output time-history obtained by exciting the system with a linear combination
of sine and cosine functions of user-selected frequencies enriched by a subtle amount of
highband random component (HRC). The method relies on the conversion of the bilinear
model into an equivalent linear model by an accurate approximation of the state in the
bilinear term using a set of sine and cosine basis functions whose frequencies are obtained
from perturbation theory. The columns of the ELM matrices which correspond to the
dependent rows of the input vector are compressed into single columns for obtaining an
input vector with linearly independent rows. Then, the states of the ELM are replaced
by the past input/output time-history measurements to create an overparameterized model
with known states. The system matrices of this model are obtained by a least-squares fit and
its unobservable states are removed to obtain a minimal realization of the ELM. Finally, the
original bilinear system is retrieved using the steady-state portion of the state time-history
generated by simulating the identified ELM with the input used in its identification.
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3.1 Introduction

The proposed method addresses the identification of the bilinear system described in
Eq. (2.1). As in the former method, the bilinear system is excited by a linear combination
of sine and cosine functions of user-selected frequencies. Then, the bilinear model can be
converted to an equivalent linear model by approximating the state x(k) in the bilinear term
x(fc)u(fc) in Eq. (2.1) using a linear combination of sine and cosine basis functions whose
frequencies are obtained by perturbation theory. The details regarding this procedure can
be found in Section 2.2. In order to obtain a unique ELM, the columns of the system
matrices of the ELM that correspond to the linearly dependent inputs are compressed into
single columns as elaborated in Section 2.3. The resulting ELM, which is only valid for the
specific input time-history, is shown in Eq. (3.1)

xffc + 1) = Ax(Jc) + ?ßF(?)«(?)
(3.1)

y(fc) = Cx(fc)+Du(fc), fc = s, s + !,...,/

where Be = B + NAi NA2 while all the other symbols maintain their predefined
meanings in Sections 2.1 and 2.2.

3.2 A "Pick Your Own States" Approach

The approximation of the state by a linear combination of sine and cosine basis functions,
as shown in Eq.(2.7), can also be performed for the remainder of the terms in Eq. (3.1) as
follows:

F(?; + 1) = ?FF(*0 + (?ß)fF(?:)«(*:)

y(fc) = C##(fc) + Du(fc), k = s,s + l,...,l
(3.2)

where

?F = A+AA

(?ß)f = A+Be (3-3)
?F = CA
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This approximation implies that the vector of basis functions F (A;) can be used as the state
vector of the ELM. Such a choice reduces the bilinear system to an ELM with a known
state time-history. Thus, unlike in the previous method, where the user determines only
the frequency content of the state by choosing the excitation input frequencies and the
order of the perturbation theory approximation, in this method the user also picks the
time-history that the state of the ELM follows.

Eq. (3.2) can be rewritten as follows:

F(? + 1) =

y(fc) =

?f (?ß)f
F(/?)

F(?;)??(*:)

D
F(*0
u(k)

(3.4)

k — s, s + 1, ...,I

The recursive relationship in Eq. (3.4) can be cast into matrix form as follows:

M =

Y =

?f (??)f

D

Q
(3.5)

where

M =

Q =

L =

Y =

F(ß + 1) F(ß + 2)

Qi

Qi

L2

y(e) y(e + i)

F(0

(3.6)

y(¿ - 1)

and

Qi =

Q2 =

L2 =

F(ß) F(ß + 1) ··· F(?-1)

F(«)«(d) F(d + í)u{s + 1) ·

u(s) u(s+l) ··· u(l - 1)

F(/ - í)u{l - 1) (3.7)
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Thus, the system matrices of the ELM ?F and (??)f can be directly solved through the
least-square approach as follows:

MQ+?f (??)f

?f D
(3.8)

-YL+

where + indicates the Moore-Penrose pseudoinverse. For a unique identification of the ELM,
it is required that the matrices Q and L have unique pseudoinverses. This condition will
be satisfied by first replacing the sine and cosine basis functions with an equivalent set of
orthogonal basis functions to ensure that the upper submatrix Qi, common to both Q and
L, is full-rank. Secondly, the linearly dependent rows of the lower submatrices Q2 and
L2 are discarded through the process of input reduction. Finally, through the process of
input absorption, those rows of the submatrices Q2 and L2, which are linearly dependent
on the remaining rows of Qi after the application of input reduction process, are discarded.
Consequently, the resulting Q and L matrices are full-rank and, therefore have unique
pseudoinverses.

3.2.1 Orthogonal Basis Functions

Even though F (A;) is comprised of sine and cosine basis functions of distinct frequencies,
the submatrix Qi is full-rank only if the data length Z is long enough. In Section 2.5.1,
the relationship between the data length and the ability of a set of sine and cosine basis
functions to mimic a sinusoidal function not contained by the set of basis functions was
demonstrated. As a corollary of that discussion, for a short data length, some of the rows
of Qi are expected to be expressible in terms of its remaining rows. In such a case, the
submatrix Qi and, thus, the matrix Q become rank deficient. This problem can be remedied
either by using a longer data length or by replacing the sine and cosine basis functions with
a set of orthogonal basis functions by performing a singular value decomposition on a matrix
whose columns form the steady-state portion of the time-history of the basis function vector
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F (A;) as follows:

|f(ß) F(ß + 1) F(?)

(?F)? (U*)2
dF 0
0 0

(?f)? (V*)a
(3.9)

where t denotes transpose, Sf indicates the matrix of the singular values, O<¡> and ?f are
unitary matrices, while ßf represents the matrix of non-zero singular values. Consequently,
(U#)i and (V§)i are the matrices formed by those columns of the matrices ?f and V^
that correspond to the non-zero singular values contained by ßf, while (U^)2 and (Vf)2
indicate the matrices formed by the remaining columns of Uf and Vf, respectively. The
submatrix (?f)/ has the same rowspace as the original matrix it was obtained from; in
addition, its rows are orthogonal. Thus, its rows can be used as the steady-state portion
of the time-history of an alternative basis function vector. Such a choice for the vector of
basis functions ensures that the submatrix Qi is full-rank.

3.2.2 Input Reduction

In accordance with the trigonometric identities in Eq.(2.6), if the product of F(&) and
u(k) produces sine and cosine functions of identical frequencies, the submatrix Q2 may
become numerically ill-conditioned. Similarly as before, a singular value decomposition
(SVD) can be performed on a matrix whose columns form the steady-state portion of the
time-history of the input of the ELM, &(k)u(k), in order to obtain a set of orthogonal
inputs, as follows:

" = ÜEVTF(ß)?(ß) F(« + l)u(s + 1) F(0«(0

U1 U2
s 0

0 0

iT
V1 V2

(3.10)

where Ü and V are unitary matrices that multiply the matrix of the singular values S from
the left and right, while S denotes the matrix of non-zero singular values. The submatrices
Ui and Vi are formed by the columns of Ü and V that correspond to the non-zero singular
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values contained by the matrix S, while U2 and V2 represent the submatrices formed by
the remaining columns of Ü and V, respectively.

The matrix ~Vj has the same rowspace as the original matrix it is obtained from, but it
is comprised of orthogonal rows. Thus, it can be used as the input for the ELM as follows:

3>(k + 1) = ?FF(?;) + (?ß)Ff)
(3.11)

y(k) = ?fF(?;)+?µ(?;) k = s, s + 1, ...,/

where (??)f = ?f(??§), and i/(k) is the (k — s + l)st column of the matrix Vi. Af-
ter the application of the aforementioned process of input reduction, the submatrix Q2
corresponding to the ELM in Eq. (3. 11) becomes:

Q2 v{s) v{s + 1) u{l-l) (3.12)

and it is now full-rank.

3.2.3 Input Absorption

Even if the submatrices Qi and Q2 are full rank separately, some of the rows in Qi may
be linearly dependent on some of the rows in Q2, causing the matrix Q to be rank deficient.
This problem can be avoided either by addition of a subtle amount of random component
to the excitation input u(k) or through the process of input absorption. The addition of a
RC uncorrelates the rows of the matrix Q2 at the expense of increasing the approximation
error in Eq. (2.7) as discussed earlier. On the other hand, the process of input absorption
suggests that those rows of Q2, which are linearly dependent on the rows of Qi, can simply
be discarded and, therefore, the resulting Q matrix is full-rank without the need of adding
a RC. The discarding of the linearly dependent rows is valid because it implies that Qi
absorbs the contribution of the eliminated rows of Q2.

Consider a 2-state system described by Eq. (3. 13)

h(k + l)

y{k) = [C1 C2)

a? a?

a* a4

-f dui (A:)

«i(fc)
u2{k)

(3.13)
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and assume that

Ul{k) = Q(Ai (fc) + /ty2(fc) + 7«2(fc) (3.14)

Plugging Eq.(3.14) into Eq.(3.13) produces the following set of equations in the state space
form:

G(J)1[Jz + !) _la1+b1a a2 + &?/? F?{&)
02(fc + l) I 03 + ò3a a,4 + biß J Cl)2(A;) M + hi/

y(k) = [ci +da C2 + dßj
(3.15)

+ dju2(k)

As it. can be seen from this example, the first input u\(k) is absorbed by the basis functions
and the second input M2 (k). Thus, the process of input absorption has been used to eliminate
those input functions that are linearly dependent on the basis functions, thereby yielding an
ELM, where the basis functions and the remaining inputs form a set of linearly independent
functions.

3.2.4 Rotation Equation

Let's assume that the following ELM is obtained by the application of the input reduc-
tion and absorption steps to the ELM in Eq.(3.2):

F^ + 1) = ?FF(?;) + (?ß)fµ(?) (3.16)

where ?f, (?ß)f are, respectively, the final forms of the system matrices A and B of the
ELM in Eq.(3.2), while µ(&) is the final form of the input u(k), after the application of
the input reduction and absorption processes. One may now expect to identify the ELM in
Eq. (3. 16) uniquely using the following equation:

where

M =

Q

?F (Be)4J=MQ+

ß(s + l) /Lt(s + 2) ··· µ(1)

F (s) F(ß + 1) ··· F(?-1)
µ(8) /x(s + 1) ··· µ(?-1)

(3.17)

(3.18)
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since the steps of input reduction and input absorption ensure that the matrix Q has a
unique pseudoinverse. However, such an attempt would still fail, as it yields a solution in
which the identified (B6)f = 0 and ?f = R, where

&(k + l) = R&(k) (3.19)

Let's call the matrix R G M(2g+1)x(29+1) as the rotation matrix, while Eq. (3. 19) as the
rotation equation. The rotation equation implies that F(?? + 1) can be written as a linear
combination of the rows of F(&). This relationship stems from the trigonometric identities
in Eq. (2.6). Consider the following example as a demonstration of the rotation equation,
where

sin(3fcr)
sin(5A;r)
cos(3/ct)

\ cos(5/ct) /
and r is the sampling period. Then, in accordance with Eq. (2.6), the matrix R, which
satisfies Eq. (3. 19), becomes

F(*0 = (3.20)

R =

cos(3t)
0

— sin(3r)
0

0

cos(5t)
0

- sin(5r)

sin(3r)
0

cos(3t)
0

0

sin(5r)
0

cos(5t)

(3.21)

Hence, Eq.(3.17) cannot be used to identify the ELM in Eq. (3. 16), since it yields a trivial
solution where (?ß)f = 0 and ?f = R.

3.3 The Proposed Method

3.3.1 Data Driven Basis Functions

The choice of the vector of sine and cosine basis functions F(&) as the state is a particu-
larly convenient one for the reasons discussed above. However, Eq. (3. 19) does not allow the
identification of the ELM as it leads to a trivial solution, where (?ß)f = 0 which implies
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falsely that the input has no effect on the state. On the other hand, this choice of basis
basis functions is not unique, and another alternative, which does not lead to an equation
equivalent to the rotation equation, is to use the past input/output time-histories as the
states. The validity of this choice can be shown conveniently using the interaction matrices.

Consider the LTI system in Eq. (1.34), which underwent the algebraic manipulation de-
scribed in Eq.(1.42). As discussed previously, such a manipulation allows for the placement
of the poles of the matrix Ä at the origin such that Äp « 0, where ? > nr, on condition
that the system is controllable and observable. The solution to the state in Eq. (1.42) can
be written as

x(Zc + p) = Apx{k) -f AP-1Bv(A:) + · · · + ABv(Zc + ? - 2) + Bv(Zc + ? - 1) (3.22)
where k > 0, x(fc) represents the state vector and v(fc) denotes the vector of input and
output such that

Iu(Zc)I
v(Zc)

y(*0
(3.23)

Recalling Ap » 0, it is clear from Eq. (3.22) that the state can be expressed as a linear
combination of the past inputs {u(Zc), u(Zc + 1),· · · , u(Zc +p— 1)} and past outputs {y(fc),
y(fc+l),...,y(fc+p-l)}.

The same reasoning can be extended to the ELM in Eq. (3.1) such that the state x(k)
can be written for s + ? < k < I as

x(Zc) = Tzz(Zc) (3.24)

where

y(fc-i)
y(A-2)

z(A) = y(Zc - p)
F^- I)It(Zc- 1)
*(Zc - 2)«(fe - 2)

<&(Zc - p)u{k - p)

(3.25)
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and T2. G R2x(Pr+2P9) is a transformation matrix. Substituting Eq. (3.24) into Eq. (3.1) yields
the following ELM

(3.26)

(3.27)

z(fc + 1) = Azz(fc) + (?ß)»F(*:)«(?)

y(Ä) = Czz(fc) + Du(fc)

where

Az ~~ *- ? ¦**- -*- ?

(Be)z = BTZ

C/z = O lz

In this formulation, the state vector z(k) is still known as in the formulation where the state
vector was F(&); however, unlike F(&), z(fc) does not satisfy the rotation equation.

For the above formulation to be valid, the transformation matrix Tz must have a unique
pseudoinverse T2+. This is possible only if the matrix

Z = z(s + p) z(s+p+l) z(0 (3.28)

is full-rank. Yet, as discussed in Section 2.3, the time-shifted rows of F(&)??(&) contained by
Z are not linearly independent. A full-rank matrix W, whose rows span the same rowspace
as Z and, thus, whose columns w(k) (s + ? < k < I) can be be used as the steady-state
portion of the state, is formed by performing a singular value decomposition on the matrix
Z as follows:

W = w(s+p) w(s+p+l) w(0
(3.29)

where

Z = USVT

= [U1 U2 S 0

O 0

(3.30)

and the banded S contains the singular values of Z on its main diagonal, while its submatrix
S represents the diagonal matrix of non-zero singular values. The matrices U and V are
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unitary matrices comprised of the submatrices Ui, U2 and Vi, V2, respectively, where
Ui and Vi are comprised of those columns of U and V corresponding to non-zero singular
values, while U2 and V2 contain the remaining columns. The columns of the matrix W
form the steady-state portion of the time-history of the vector w(fc). The relationship
between

X x(s+p) x(s+p+l) x(0 (3.31)

and W can be written as follows:

X = TZZ

(3.32)
= T2(UEVT)
= (TzUiS)ViT
= (T2UiS)W

in accordance with Eq. (3.29). For s + ? < k < I, the above relationship implies that

x(A;) = Tww(A;) (3.33)

where Tw = T2UiS and w(fc) denotes to the (k — s —p+ l)st column of W.

3.3.2 Identification of the ELM

Plugging Eq.(3.33) into Eq.(3.1) yields the following ELM:

w(A: + 1) = Aww(fc) + (Be)w*(fc)w(A;)

y{k) = Cww(k) + Ou{k)
where s+p<k<l — 1 and

A — T +AT

(3.34)

(3.35)(Be)w = Tw+Be
Gw — GTW

The recursive relationship in Eq. (3.34) can be converted to a matrix equation as follows:

VV =

y =

»•w *-»wB, Q
(3.36)

D
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where

W =

Q =

y =

L =

w(s + p+l) w(s+p + 2) ··· w(Z)

Qi

y(s+p) y(s + p + 2) ··· y(Z - 1

Qi

(3.37)

and

Qi = |w(.s+p) w(s + p+l) ··· w(Z-l)J
Q2 = F(ß + p)u(s +?) F(ß +? + l)u(s + p+ 1)

L2 = u(s+p) u(s+p+l) ¦¦¦ u(Z-l)

An attempt to identify the ELM above using:

[aw Bw] = WQ+
icw Dl = ^L+

F(? - l)t»(Z - 1) (3.38)

(3.39)

would not return a unique solution because the matrix Q, which needs to be inverted,

contains shifted rows of F(&)?(/?), therefore, it is in general not full-rank. As in the previous
method, the issue is overcome by enrichment of the excitation input u(k) by a subtle amount
of RC.

However, in this method, in order to lessen the error due to the approximation of the
state x(fc) by the basis functions <fo(fc) (i — 0, 1, · ¦ · , 2q) in Eq.(2.7), the random component
to be added to the excitation input u(k) is chosen to be a highband random signal obtained
by passing a randomly generated WGN signal through a high-pass filter. Since any physical
system intrinsically behaves as a low-pass filter, the change in the state of the bilinear
system due to the addition of RC to the excitation input can be kept to a minimum by
using a highband random component (HRC). Thus, the final form of the excitation input
u(k) becomes

/ /

u(k) = \] Oi cos(w¿fcr) + Yj bi sm(w¿/cr) + hrc(k) (3.40)
/=o ¿=1
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where hrc{k) stands for the faint amount of HRC added. The precise amount of HRC
depends on how ill-conditioned the matrices Q, L in Eq.(3.39) are for the specific prob-
lem under consideration. The level of ill-conditioning depends on the parameter p, which
depends on the number of outputs r and on the order of the system to be identified ?
through the requirement ? > rn, in addition to the number of basis functions preferred, the
frequency ranges the excitation input and basis functions cover, and so forth.

In summary, the bilinear system to be identified is excited with an input u(k) of the
form elaborated in Eq. (3.40) (i.e. a linear combination of sine and cosine functions, of user-
selected frequencies, enriched by a small amount of HRC), and the output time-history is
recorded. Next, the input time-history of <l>(/e)w(/c) is numerically generated to serve as
the input vector of the ELM. The steady-state portions of the numerically generated input
time-history and the recorded output time-history are fed into Eq.(3.39) to identify the
system matrices of the ELM. A minimum order realization of the ELM that has the same
order as the original bilinear system will be derived by eliminating its unobservable states.

The reduction of the model order is accomplished by forming the observability matrix
in Eq.(3.41)

T

Cw

(3.41)

CWAW"J
where ñ is the order of the overparameterized ELM, and then, by performing an SVD on
? to obtain a full-rank transformation matrix

T0 = (Ue)1Se(VeV (3.42)

where

T = ?TST?ßt

- (Ue)1 (Ue)2 (Ve)1 (Ve)2
(3.43)Se 0

0 0

and the submatrices (Ue)1, (Ve)1 are respectively formed by the columns of the unitary
matrices Ue, Ve which correspond to the diagonal matrix of non-zero singular values Se,



www.manaraa.com

67

which itself is a submatrix of the banded singular value matrix S© . On the other hand,
(Ue)2, (V©)2 are comprised of the remaining columns of Ue, Ve, respectively. Lastly,
the overparameterized ELM is transformed to the coordinates in which the unobservable
states are eliminated as follows:

(3.44)
r(Ä + 1) = Arr(fc) + (Be)r*(fc)u(A)

y(fc) = Crr(fc) + Du(Jb)

where s+p<k<l— 1 and r(k) G Rn represents the vector of observable states, while

Ar - T0+AwT0

B1. = Te+(Be)w (3-45)
Cr = CwTe

3.3.3 Recovery of the Bilinear System

The reduced order ELM in Eq. (3.44) has the same order ? as the original bilinear system.
In order to recover the system matrices of the original bilinear model, the steady-state
portion of the state time-history of the reduced order model r(k) (s+p < k < I) is generated
by feeding F(&)?(?:) to the reduced order model in Eq.(3.44), and the identification of the
bilinear system matrices is concluded using:

A1. B1. Nr

Dr

= RQ+
^L+

(3.46)

where

R =

Q =

y =

L =

r(s+p+l) r(s+p + 2) ¦¦¦ r(0j
r(s+p) r(s+p+l)

&(s+p)u(s+p) F(ß +?+ l)u(s +p+ 1)

y(s+p+l) y(s+p + 2) ··· y(l)

y(s+p) y(s+p+l) ¦·· y (I - 1)
u(s+p) u(s + p+l) ¦¦¦ u(l - 1)

r(Z - 1)
F{1 - l)u{l - 1)

(3.47)
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The original bilinear system is related to the identified bilinear system through the
following coordinate transformation:

r(fc) = Trx(/c) (3.48)

such that

B = Tr Br

N = Tr-1NrTr (3-49)

D = Dr

where s+p<k<l-l and Tr is an invertible matrix.

3.4 The Effect of the Parameters the User Can Choose

In the implementation of such an identification approach, certain parameters have to be
selected by the user. In this section, the analyses of the effects of each parameter on the
identification results are presented. The effects of the choice of the set of excitation input
frequencies O?, perturbation order TV, and data length / were already discussed in Section
2.5, and are the same for this method, as well. As a summary of the main conclusions,

(i) the excitation input frequencies should preferably be selected randomly rather than
evenly spaced in order to avoid ill-conditioning, (ii) the perturbation order N should be
selected high enough to ensure that the approximation in Eq. (2.7) is valid (On the other
hand, choosing a too high value of TV causes numerical ill-conditioning in the matrices that
contain shifted rows of $(A;)r¿(fc)), (iii) while a long data length I helps eliminate similar
numerical ill-conditioning, it also increases the approximation error in Eq. (2.7).

3.4.1 The Parameter ?

The parameter ? should be chosen such that rp > n. In practice, it is usually not
possible to know the system order ? a priori, therefore, a high enough value of ? should
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be chosen. As discussed previously, the higher the choice of p, the more ill-conditioned the
matrix Q gets because its lower submatrix Q2 contains time-shifted row blocks of F(&)?(&),
and due to the trigonometric identities in Eq. (2.6) some of these shifted rows may be linearly
dependent. The addition of the HRC resolves the ill-conditioning issue at the expense of
increasing the state approximation error in Eq. (2. 7), as not all of the frequencies introduced
to the state by the addition of HRC can be captured by the basis functions. Therefore, ?
should be kept as small as possible, as in the previous method but large enough to satisfy
rp > n.

3.4.2 Cutoff Frequency of HRC

The generation of HRC is accomplished by passing a WGN signal through a high-pass
filter that attenuates the amplitudes of the frequencies below a chosen cutoff frequency ?€.
The farther apart ljc is chosen from the Nyquist frequency, the richer the HRC gets. As the
HRC gets richer, its frequency content includes more of the lower frequencies. Therefore,
on the one hand, since all physical systems act as low-pass filters, the state approximation
error in Eq. (2.7) increases, for the same amount of HRC. On the other hand, a smaller
amount of HRC suffices to uncorrelate the linearly dependent rows of Q2·

3.4.3 The Amount of HRC

In contrast to the algorithm described in Chapter 2, where there are ? + 2 row blocks of
F(&)?(&) and p + 1 row blocks of time-shifted y(fc), in this algorithm there are merely p+ 1
row blocks of F (&)«(&) and ? row blocks of y(k). Therefore, the amount of RC necessary
to avoid the ill-conditioning of Q should be less compared to the previous formulation, if
the added RC were in the form of WGN. Instead, the excitation input is enriched using a
highband RC. Though not as rich as WGN, a small amount of HRC still suffices to obtain a
full-rank Q as illustrated in the succeeding example, when the choice of the cutoff frequency
is not too close to the Nyquist frequency.
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3.5 Numerical Example

Let's illustrate the proposed method through the analysis of the same non-dimensional
example used in Section 2.6, where

0.9924 0.0118

-1.1778 0.8747

1 2LD = 1.2000

,B =
0.0126

0.0042
,N

0.2000 0

0 0.2000 (3.50)

the number of inputs m = 1, the number of outputs r = 1, the order of the system ? — 2.
According to the requirement rp > n, the minimum choice for the parameter ? is 2, therefore,
? will be chosen to be 2 as in the former example for direct comparison.

Let's keep the sampling period t to be equal to 0.01 seconds for a set of input/output
measurement time-history of length equal to I = 5, 000 time-steps or 50 seconds. The
excitation input u(k) is constructed in accordance with Eq.(3.40). Tabulated in Table 2.6,
the excitation frequencies u;¿ and the amplitudes a¿, o¿ are chosen to be the same as in
the former numerical example. The highband random component hrc(k) is obtained by
passing a randomly generated WGN, whose RMS is 5% of the RMS of the base signal,
through a highpass 10th order Butterworth filter, which has a cut-off frequency equal to
45Hz. The cut-off frequency corresponds to 90% of the Nyquist frequency, which is 50Hz.
Fig. 3.1 presents the Bode plot of the aforementioned filter, while Fig. 3. 2a shows the designed
excitation input u(k) before and after the addition of HRC, shown solely in Fig.3.2b. It
can be inferred from these plots that the change in u(k) due to the addition of hrc(k) is
very small. The steady-state of portion of the state time-history is assumed to start at the

j
time-step s = 748, since ? (A + Nu(Zc)) < Ie - 20 for s < j <l.

k-l

The vector of sine and cosine basis functions F (A;) is created using a 2nd order pertur-
bation theory approximation. Although the basis functions are actually used to represent
the state, the output can still be used to roughly estimate the required number of the per-
turbation order, since it contains the contributions from at least one of the states, which

is coupled with the rest of the states in the difference equation representing the bilinear
model. The contribution coming to the output y(k) from the term Dw(A;) does not violate
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Figure 3.1: The Bode plot of the 10t/l order Butterworth niter with cutoff frequency 45Hz
used in obtaining the HRC from a randomly generated WGN signal
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(a) The plot of designed excitation input u(k) before
and after addition of the HRC

(b) The plot of added HRC, hrc(k)

Figure 3.2
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this reasoning, as the set of frequencies present in u(k) is a subset of those present in the
state x(fc). As a demonstration of the above discussion, Fig.3.3 depicts the steady-state
portion of the time-histories of the output y(fe) and its representation y(fc) in terms of the
basis functions </>¿(fc)(¿ = 0, 1, · · · ,2q), where

+

y(e) y(« + l) y(0 = \y(s) y(s + i) y(0

f(8)
f(8 + 1)

f(1)

f{8)
f{3 + 1)

f(1)
(3.51)

Moreover, the amount of the mismatch between y(k) and its representation y(k) can be
quantified using the error function defined in Eq.(2.25) as error(y(k),y(k)) = 5.7451%.
The validity of the discussion in terms of the output y(fc) can be better observed from
Fig.3.4, where the plots of the steady-state portions of the time-histories of the second state
X2(k) and its representation X2(k) in terms of the basis functions, where

£2(s) Xi{s + 1) X2(l)\ - \x2(s) £2(5+ 1) Z2(O

f(3)
f(8 + 1)

f(1)

f(8)
f(8 + 1)

f(1)
(3.52)

are provided. The amount of mismatch between the two is calculated, using error(x(k), x(fc)),
to be 5.9394% and 8.2060% for the first and second states, respectively, which are reasonably
close to the mismatch calculated for the output.

At this point, it is also worthwhile to mention that, as tabulated in Table 3.1, the

mismatch between x(k) and x(fc) would decrease if the excitation input u(k) were not
enriched at all, and would increase if the excitation input were enriched using the generated
WGN without passing it through the designed Highpass Butterworth Filter. Thus, the

enrichment of u(k) should be performed by addition of HRC.

The time-history of the vector z(/s), whose rows span the state-space of the ELM, is
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Figure 3.3: The plot of the steady-state portion of the time-history of y(k) and its repre-
sentation y(fc), in terms of the basis functions
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Figure 3.4: The plot of the steady-state portion of the time-history of the second state X2{k)
and its representation ¿2 (^), in terms of the basis functions
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Enrichment By error{xi(k),x\{k)) error (x2{k),x<2.{k))
None

HRC

WGN

5.9322%

5.9394%

6.1225%

8.2045%

8.2060%

8.3861%

Table 3.1: The effect of the type of enrichment of u(k) on the mismatch between the first
and second states, x\(k) and X2{k), and their representations, denoted by xi(k) and X2(k),
in terms of the sine and cosine basis functions

generated using the past input and output time-histories through the following relationship:

z(Ä) (3.53)

y(fc-i)
y(fc-2)

&{k-l)u{k-\)
F(& - 2)u{k - 2)

where s +p < k < I. The generated time-history is cast into the matrix form as follows:

Z = z(s+p) z(s+p) z(0 (3.54)

where the columns of the matrix Z form the time-history of the vector z(k). The matrix
W, whose columns form the time-history of the vector of basis functions w(fc), is obtained
by performing a singular value decomposition to Z as described in Eq. (3. 29) and (3.30).
Fig. 3.5a exhibits the singular value plot of Z, while Fig.3.5b presents the same plot if the
excitation input contained no HRC. It is clear from these plots that the addition of HRC
causes Z to become full-rank.

Then, the matrix W is obtained as in Eq. (3.29). Although no rows of Z are linearly
dependent, which implies that z(k) could be used as the state of the ELM, W has a better
condition number than Z (the 2-norm condition number of W is 1.0000, while the 2-norm
condition number of Z is 2.8150 ¦ 102); thus, as the state of the ELM, the usage of w(k) is
preferred over z(k), though both are valid choices. The aforementioned reasoning can be
demonstrated by calculating the mismatch between the state x(fc) and its representation in
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terms of the rows of Z, xz(A;), where

\xz(s + p) xz(s + p + l) ··· Xz(O x(s + p) x(s+p + l) c(0 Z+Z

(3.55)

using erro7-(x(fc), xz(fc)) as 1.7267% and 0.4698% for the first and second states respectively.
Moreover, Fig.3.6 indicates that the time-histories of the steady-state portions of the second
original state xz(k) and its representation (xz)2(k) match "almost" perfectly. In the light
of the above findings, it is concluded that the steady-state portions of the past input and
output time-histories form a set of basis functions in terms of which the steady-state portion
of the state time-history can be represented accurately. Recalling that the rowspace of W is
the same as the rowspace of Z, the same conclusion is also valid for the set of basis functions
formed by the rows of W. In fact, it has been shown both numerically and visually that
the past input and output time-histories outperform the sine and cosine basis functions in
representing the state more accurately.

The identification of an overparameterized ELM is accomplished by Eq. (3.39). As dis-
cussed previously, a unique identification of the ELM is contingent upon the pseduoinversion
of Q uniquely, which is only possible if the excitation input u{k) is enriched by a subtle
amount of HRC. Fig.3.7a presents the plot of the singular values of Q, while Fig.3.7b
shows the same plot if u(k) were not enriched. The plots indicate that Q contains linearly
dependent rows, unless u(k) is enriched.

As shown in Fig. 3. 8, where the norm of the eigenvalues of the matrix Aw are presented,
only 2 out of the 444 eigenvalues of Aw are non-negligible. Hence, the order of the overpa-
rameterized model can be reduced to 2. The redundant states of the ELM can be discarded

through a model reduction process, where the unobservable states are eliminated. Fig.3.9a
presents the plot of the singular values of the observability matrix T defined as follows:

0 =

^wA?

C A 443

(3.56)
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Figure 3.8: The plot of the 2-norm of the eigenvalues of the matrix Av

while Fig.3.9b presents the same plot for the controllability matrix C defined as follows:

C = •t»w Awi>v 443 1 (3.57)

It can be inferred from these plots that while all states are controllable, there exist only 2
observable states. Since the identified model must contain only the states which are both
observable and controllable, the 442 unobservable states are eliminated to obtain a minimal
realization of order 2 as described in Eq.(3.44).

Both of the ELMs represented by Eq. (3.34) and (3.44) are capable of reproducing the
steady-state portion of the output y(k), when fed the input <J>(fc)u(fc). In fact, while
Fig.3.10a presents the steady-state portion of the output reproduced by the ELM in Eq.(3.34),
denoted by yw(k), against the original output y(fc), Fig.3.10b shows the steady-state por-
tion of the output reproduced by the ELM in Eq.(3.44), denoted by yT{k), against y(k).
It can be inferred from these figures that there is a strong agreement between the repro-
duced and original outputs. Furthermore, the mismatch between the reproduced outputs
and the original output can be quantified by using the error function defined in Eq. (2.25) as
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error(y(k),yw(k)) = 1.0313% and error(y(k),yr{k)) = 1.0313%. The fact that both error
functions yield the same value can be explained by recalling that the unobservable states
does not contribute to the output. Moreover, the strong agreement between the reproduced
and original outputs is indicative of the quality of the agreement between the reproduced
and original states, even though they cannot be compared directly, as they are related to
each other through a coordinate transformation.

Finally, the steady-state portion of the reproduced state xr(fc) is used to identify the
bilinear system matrices as in Eq. (3.46) to conclude the identification, where the identified
system matrices are as follows:

C =

0.9672 0.0745

-0.1593 0.9016

-9.7764 7.3912

B =
0.0035

0.0085
,N =

0.1995 0.0094

0.0058 0.1882 (3.58)

,D = 1.1999

Fig.3.11 presents the singular values of the matrix Q, which needs to be full-rank for a
unique identification. As it can be seen from the plot, Q is uniquely invertible, since the
ratio of the largest singular value to the smallest singular value, namely its 2-no'rm condition
number, is 7.0998 · 101.

As a measure of the accuracy of the identification, a new random input of length 20, 000
time-steps is generated from a Gaussian distribution with mean equal to 0 and standard
deviation equal to 1. The generated test input Ui(A;) is fed both to the original and to the
identified bilinear systems and the corresponding output time histories, yt(fc) and yp(k) re-
spectively, are obtained. Fig. 3. 12 shows the plot of the predicted output time-history yp(k)
against the actual output time-history yt(fc) with a prediction error of 1.7409% between the
two. The small prediction error clearly indicates that the predicted output yp(k) is a very
accurate estimate of the output y¿(fc) of the bilinear system.

Furthermore, the original bilinear system matrices A and N are related to the identified
bilinear system matrices Ar and Nr, respectively, through a similarity transform as shown
in Eq. (3.49). Therefore, the eigenvalues of A, Ar and N, Nr need to be the same. For the
example above, these eigenvalues are found to be {0.9336±0.1022¿}, {0.9344 ±0.1039¿} and
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(a) (b)

Figure 3.10: The plot of the steady-state portion of the time history of the reproduced
outputs yw(k) and yr(fc) against the original output y(fc)
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{0.2000,0.2000}, {0.2032,0.1846}, respectively. Being invariant against coordinate trans-
formations, the direct transmission matrix associated with the original system D = 1.2000
and identified bilinear system Dr = 1.1999 should be the same, when there is no identi-
fication error. The "almost" perfect match between the eigenvalues of the identified and
original system matrices and the "almost" exact estimation of the direct transmission term
confirms the success of the identification.

3.6 Conclusions

In the previous chapter, it was shown that a bilinear system could be converted to an
ELM by representing its steady-state portion of its state as a linear combination of sine and
cosine basis functions. Since the bilinear system matrices are extracted from the identified
ELM, it is important that the conversion from the bilinear system to the ELM is accurate.
In this chapter, it was shown using the interaction matrix formulation that the state could be
expressed in terms of past input and output time-histories for a more accurate representation
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of the state and, thus, for a more accurate conversion. By discarding the unobservable states
of the resulting overparameterized ELM, it was illustrated that a new, minimal order ELM
could be obtained. The bilinear system matrices are, then, extracted from the reduced
order ELM. The accuracy of the identified bilinear system was confirmed by the fact that
it was able to predict the response of the original bilinear system due to a new, randomly
generated test input. During the implementation of the proposed algorithm the user is
given the freedom of selecting certain parameters. The effect of choosing a high parameter
? was shown to cause ill-conditioning. Thus, it should be kept as small as possible. It was
illustrated that as the cutoff frequency of the HRC increases, the state approximation error
decreases; while the state approximation error increases, as the amount of HRC increases.
The concepts of input reduction and input absorption, which are processes to obtain a
unique ELM, were also introduced.
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Chapter 4

Identification of Bilinear Systems Through

Equivalent Linear Models via an Iterative Method

This chapter presents the third proposed method for the identification of single-input,
multi-output, time-invariant, discrete-time bilinear systems using the steady-state portion
of single-input, multi-output time-histories obtained by exciting the system with a linear
combination of sine and cosine functions. These functions of user-selected frequencies are

enriched by a subtle amount of highband random component (HRC). The method relies on
the conversion of the bilinear model into an equivalent linear model (ELM) by an accurate
approximation of the state in the bilinear term using a set of sine and cosine basis functions
whose frequencies are obtained from perturbation theory for an N)th order of approximation.
The addition of the highband random component (HRC), along with a step in which the
columns of the ELM matrices that correspond to the dependent rows of the input vector
are compressed into single columns, is needed so to obtain an input vector with linearly
independent rows. The aforementioned ELM is identified using a direct method of LTI
system identification, and the steady-state portion of the state-time history of the bilinear
model is reproduced by feeding the identified ELM the input used in its identification. The
steady-state portion of the generated state time-history corresponds to the (N + l)th order
approximation of the steady-state portion of the state time-history of the bilinear system.

In this approach, a new ELM is obtained by rearranging the terms of the perturbation
theory based approximation equation, whose state is the (N + 2)th order approximation to
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the state of the bilinear system and whose input vector is comprised of the rows u(k) and
xN+1(k)u(k), where Xn+1(A;) is the (N + l)th order approximation to the state. The new
ELM is identified using a direct method of LTI system identification, and the steady-state
portion of the state time-history of the bilinear model is reconstructed by exciting it with
the input used in its identification. The steady-state portion of the generated state time-
history corresponds to the (N + 2)th order approximation to the steady-state portion of the
state time-history. The process is repeated iteratively until the steady-state portions of the
consecutively reproduced state time-histories differ only by a negligibly small amount. At
this point, the bilinear system is retrieved using the steady-state portion of the identified
state time-history.

4.1 Introduction

The proposed method addresses the identification of the bilinear system

x(k + 1) = Ax(Ib) + Bu(k) + Nx(jfe)«(jfc)
(4.1)

y(k) = Cx(k) + Ou(k), 0<k<l

As in the former method, the bilinear system is excited by u(k), a linear combination of
sine and cosine functions of user-selected frequencies Ui(i = 0, 1, ¦ · ¦ , /), as shown below:

/ /

u(k) = 2_] ai cos(uikr) + \] h sin^/cr), 0 < k < I (4-2)
¿=o ¿=i

where bi(i = 1,2,··- , /) and a¿(¿ = 0, 1, · ¦ ¦ , /) are respectively the amplitudes of the sine
and cosine functions, while r represents the sampling period. Then, the bilinear model can
be converted to an equivalent linear model by approximating the steady-state portion of the
state x(/c) in the bilinear term x(k)u(k) in Eq. (4.1) using a linear combination of sine and
cosine basis functions, whose frequencies are obtained by perturbation theory. The details
regarding this procedure can be found in Section 2.2, where it is also stated that the state
of the bilinear system in Eq. (4.3)

x(fc + l) = Ax(A;) + Bu(k) + eNx(k)u(k), 0<k<l (4.3)
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can be represented by the power series:
OO

xW = XXx4(JO, s<k<l (4.4)
¿=0

and the Nth order approximation xN (k) to the state x(fc) is the truncated power series:
JV

XJvW = XXx4W, s<fc</ ¦ (4.5)
¿=0

where Xi(k)(i = 1,2, · · · ,N) are not only the solutions to Eq.(4.6)

Xu(k + l) = AXo(k) + Bu(k)
Xl(k + 1) = AXl(k) + NXou(k)
X2(k + l) = AX2(k) + NXlu(k) (4.6)

XN(k + 1) = AXN(k) + ???_,#)
but also the basis functions in terms of which xN(k) is expressed.

4.2 The Proposed Method

4.2.1 Perturbation Theory Revisited

The parameter e, which controls the amount of perturbation (bilinearity) added to the
corresponding linear system

x(fc + 1) = Ax(Zc) + Bu(fc) (4.7)

is set to 1 so that Eq. (4.3) takes the form of the bilinear system to be identified, shown in
Eq. (4.1). Thus, the expression for the state in Eq. (4.4) becomes

OO

xW = X X1 (k), s<k<l (4.8)
i=0

while the Nth order approximation xN (k) to the state x(fc) reduces to the truncated power
series:

N

?*(*0 = ??4(*)> s<k<l (4.9)
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Let's add both sides of Eq. (4.6) to obtain a single equation:
N N N-I

¿Xi(fc) = AJ]xi(A) + B«(fe) + N53xi(fe)u(fc)) s<k<l (4.10)
i=0 i=0 ¿=0

where the left-hand-side of the equation is equal to the series in Eq. (4. 9). The series on the
right-hand-side of Eq. (4. 10) can also be rewritten in the light of Eq. (4.9) as:

xN(fc + I) = Axn (A;) + Bu(A;) + Nxn^1(AOu(A;), s<k<l (4.11)

thereby leading to a recursive relationship in terms of the approximation order N. Replacing
TV in Eq. (4. 11) by N + 1, the recursive relationship becomes:

Xn+1(A; + I) = Axn+1 (A;) + Bu(fc) + Nxn(A;)u(A;), s < k < I (4.12)

Eq.(4.12) can be used to generate the steady-state portion of the (N + l)th order ap-
proximation to the state x(A;), if the time-history of the steady-state portion of the Nth
order approximation Xn(A;) and the bilinear system matrices A, B, N are known. In fact,
Eq. (4. 12) can be rewritten in the form of an ELM as follows, which exhibits the validity of
this statement more evidently:

G 1 / u(k) \
Xn+1(A; + I) = Axn+1(A:)+ B N > s<k<l (4.13)L J \xN(k)u(k)J

As elaborated in Section 2.2, the steady-state portion of Xn(A;) can be approximated using
sine and cosine basis functions of frequencies obtained by perturbation theory for a choice
of approximation order N, as shown in Eq. (2.7) and repeated below for convenience:

xw(fc) = A§(fe), s<k<l (4.14)

where ? is the matrix of coefficients that multiplies the vector of basis functions F (A;),
comprised of rows <^¿(A;)(z = 0,1,··· ,2q) such that (f>o(k) = 1, 4>i(k) = sin{ùikr) while
<£g+j(fc) = cos(ûikr) for ¿ = 1,2, .., q. The sampling period is denoted by r, and ü3¿ indicates
the basis function frequencies obtained by perturbation theory, while q is the number of
nonzero basis function frequencies.
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4.2.2 Iterative Method of Identification

Substituting Eq. (4. 14) into Eq. (4. 13) yields the following ELM:

Xn+1(^ + I) = Ax^+1(A;) +

y(Zc) = Cxn+1(Zc) +

B NA

D 0

u{k)
F(?)?(?)>
u(k)

F(?)«(*:),

(4.15)
s< k<l

where 0 G Krx(23+1) and r is the number of outputs.

Such an ELM cannot be identified uniquely because, at least, the first two rows of its
input vector are linearly dependent, as shown in Eq. (4. 16)

«(A;)
MkHk)1

( u(k) \
</>o(fc)ii(fc)

( «(fe) \
u{k)

¿i(fc)u(fc) (4.16)

\<f>2q(k)u(k)J \4>2q(k)u(k)J
However, this problem can be fixed by compressing the columns of the system matrices that
correspond to the repeated rows of the input vector into single columns as follows:

/ u(k) \

xwl(Hl) = Axn+1(Zc) B + NAi NA2
¿i(fc)u(A0

\<j>2q(k)u(k)J
I <k) \

(4.17)

y(Zc) = Cxn+1 (Zc) + D 0
0i(fc)u(fc)

s <k<l

WZcMZc)/
where 0 G Wx(2q\ A1 G M.n is the first column of the coefficient matrix A, and A2 G ???(2«)
is the matrix of the remaining columns so that A =
of the bilinear model.

Ai A2 , while ? denotes the order
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Eq. (4. 17) can be written in a more compact form as:

Xiv+i^ + 1) = Axn+1 (fc) +
y(k) = CxN+1(k) +

B + NA1 NA2 F(/0?4(?:)

D 0 F(&)?(?:), s<k<l
(4.18)

To identify the ELM in Eq. (4. 18), one needs to build the input vector time-history nu-
merically and feed it, along with the recorded output-time histories, to a linear system
identification tool. This tool should demonstrate robustness against noise (both measure-
ment and process noise) , as there will be a certain amount of numerical noise that depends
on the value of iV chosen in truncating the power series in Eq. (4.5), even if the record of
the input/output time-histories contains no measurement noise.

In the bilinear system identification approach proposed here, a direct method of LTI
system identification (DirectID), presented in Ref. [9], is preferred for its robustness against
measurement and process noise. One of the steps of the DirectID algorithm requires a
matrix V, composed of only the past input and output data time-histories as shown in
Eq.(4.19):

/ y(s) y(e + i) ··· y(l-P-l) \
y(s + l) y(s + 2) ··¦ y{i-p)

V =
y(s+p- 1)

<&(s)u(s)
F^ + ?)^ + 1)

y(s+p)
#(s + l)u(s + l)
F(ß + 2)«(6' + 2)

\^>(s + p)u(s+p) F(ß+? + l)u{s + p + 1)

Y(I - 2)
F(1 - ? - l)u(l - ? - 1)

F (I — p)u(l -?)

F(?-1)?(?-1) J
(4.19)

where rp> ?. The algorithm requires that this matrix is full-rank. As discussed previously,
the matrix V in Eq. (4. 19) contains time-shifted rows of F(&)?(&), and thus, it is generally
not full-rank, unless the excitation input u(k) is enriched by a subtle amount of random
component. The random component to be added to the excitation input u(k) is chosen to be
a highband random signal obtained by passing a randomly generated WGN signal through
a high-pass filter. Since any physical system intrinsically behaves as a low-pass filter, the
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change in the state of the bilinear system due to the addition of RC to the excitation input
can be kept to a minimum by using a highband random component (HRC). Thus, the final
form of the excitation input u(k) becomes:

/ /

u(k) = 2_, ai cos(uikr) + \J o¿ sin(a;¿fcr) + hrc(A;) (4.20)
¿=o t=l

where / represents the number of excitation input frequencies and hrc(k) is the HRC used
in the enrichment of u{k). In order to reproduce the steady-portion of the state time-history
of the ELM Xn+1(A;), the numerically generated input time history, which was used in its
identification, is fed to it. Any choice of the initial condition Xn+1(O) is acceptable for this
task, since we are interested merely in the steady-state portion of the state time-history.
At this point, it is worthwhile to remark that, although the identified ELM is based on
the assumption that x(fc) « xN(k)(s < k < I), the time-history of the reproduced state
corresponds to Xn+1(A;). The preceding statement may appear contradictory because the
DirectID algorithm is an LTI system identification tool and LTI systems have the property
that the frequencies contained by their inputs are also present in their states and outputs.
However, in the case discussed above, the steady-state portion of the measured output
time-history, obtained by exciting the original bilinear system with the excitation input
u(k), contains frequencies not contained by the numerically generated input F(?;)?(?;),
used in its identification. Thus, the input/output time-histories used in the identification
of the ELM violates a property shared by all LTI systems, leading to an ambiguity on
what the frequency content of the steady-state portion of its state time-history would be.
It is observed that the DirectID algorithm yields an ELM whose steady-state portion of

the reproduced state time-history contains only the frequencies present in the input time-

history used in the identification of the ELM, in accordance with the previous reasoning
which stated that the steady-state portion of the reproduced time-history of the identified
ELM corresponds to Xn+1(A;).

The identified state time-history corresponding to Xn+1(A;) still contains numerical er-
rors, since the output time-history, used in its identification, is obtained from the original

bilinear system, thus, it contains frequencies which should not be present in Xn+1(A:). How-
ever, the identified state time-history corresponding to xN+1 (A;) is still a better approxima-
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tion of the original state of the bilinear system x(k) than that corresponding to xN(k), as
it is a higher order approximation. Consequently, in the light of this discussion, an itera-
tive process can be defined, where the identified state is improved at each iteration, using
Eq. (4. 13) as follows:

1. Identify the ELM in Eq. (4. 18) acquired by performing an Nth order approximation to
the steady-state portion of the state time-history using sine and cosine basis functions
of frequencies obtained by perturbation theory.

2. Reproduce the state of the identified ELM by feeding it the input time-history used
in its identification (i.e. <J?(fc)u(fc)). The reproduced state will be denoted by zN+1(k)
and the steady-portion of its state time-history corresponds to the (JV + l)th order
approximation of the state, X^+1(Zc).

3. Identify the ELM in Eq. (4. 13), where JV is replaced by TV + 1, using the steady-state
portion of the time-history of zN+1(k), obtained in the former step.

4. Reproduce the state of the identified ELM by feeding it the input time-history used

in its identification. The reproduced state will be denoted by zN+2 (k) and the steady-
portion of its state time-history corresponds to the (JV + 2)th order approximation of
the state, xN+2(k).

5. Identify the ELM in Eq. (4. 13), where JV is replaced by JV + 2, using the steady-state
portion of the time-history of zN+2(k), obtained in the former step.

6. Repeat steps 4-5 by incrementing the approximation order by 1 at each iteration,
until the change in the steady-state portions of the reproduced state time-histories in
consecutive iterations is negligibly small.

Note that the identified ELMs in the aforementioned procedure do not have to be in the
same coordinates. On the contrary, in general, they are linked to each other through linear
coordinate transformations as follows:

zM(fc) = TA(fe), s<k<l (4.21)
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where Tn is the coordinate transformation matrix relating Zn+1(A;) to Xn(A;). Similarly the
steady-state portion of the identified state time-history that results at the end of the last
iteration is linked to the state of the original bilinear system as follows:

zM(k) = TxX(A;), S<A;</ (4.22)

where M denotes the highest order of approximation achieved in the last step of iteration,
while Tx is the coordinate transformation matrix relating zM (k) to x(fc)

Finally, after the last iteration, the bilinear system matrices can be retrieved using:

= ZmQm-iA-M "M ™M

CM DM
(4.23)

YRT

where

ZM =

Qm-! =

Y =

RM =

zM(Z-l)
It(Z-I)

Z^1(I-IMI-I)

|zM(s + l) zM(s + 2) ··· zM(l)\
zm(s) Ms + 1)
u(s) u(s + 1)

zM_1(s)u(s) Z^1(S + l)u(s + l) ··¦ Z^1(Z-I)U(Z-I)J (4.24)
y(s + l) y(s + 2) ··· y(Z)

ZM(» + 1) 2M (S + 2) ··· 2M (O
u(s + 1) u(s + 2) · ¦ · u(l)

and the identified bilinear system matrices are related to the original bilinear system ma-
trices through:

A = T-1A1J1
B = T1B,

N = Tx-1^Tx
C = CMTX

(4.25)

D = D,
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4.3 Illustrative Numerical Example

Let's illustrate the proposed method through the analysis of a simple non-dimensional
example. Consider a bilinear system of the form in Eq.(4.1), where

A = 0.3 B = 0.2 N = 0.3 C = I D = O (4.26)

the number of inputs is m = 1, the number of outputs is r = 1, and the order of the system
considered is equal to ? = 1. The minimum choice for the DirectID parameter ? is 1, since
rp > ? and such a choice allows us to keep, in this numerical example, the dimensions of
the matrices small.

Let's choose the sampling period r to be equal to 0.01 seconds for a set of input/output
measurement time-history of length 2,000 time-steps. The steady-state portion of the re-

j

sponse is assumed to start at time-step s = 43, since Jl (A-fNti(fc)) < Ie — 20 for
fc=l

s < j < 20, 000. In an actual identification task some a priori knowledge of the system is
necessary for such an assumption to be valid. The excitation input u(k) is defined as below:

ti(fc) = 1.8541 sin(30ÄT) (4.27)

and it is not enriched by the addition of RC. Recall that the addition of RC is necessary to
avoid ill-conditioning of matrices formed during application of DirectID algorithm. However,
due to the simplicity of the above example, there is no need for enrichment of u(k).

The Nth order approximation of the state xN(fc) is formed for ?G = 1,2,3,4,5, 10 us-
ing Eq.(4.9). Fig.4.1 contains the power spectral density (PSD) plots of the steady-state
portions of the time-histories of the reconstructed state xN (k) and that of the state x(fc)
of the bilinear system. The PSD plot of x(fc) contains evenly spaced peaks of decreasing
amplitudes. As discussed previously, the frequencies contained by the steady-state portion
of the time-history of x(fc) can be obtained using perturbation theory as the sums and
differences of the input frequencies, which correspond to the integer multiples of the exci-
tation input frequency (also referred to as the harmonic frequencies or harmonics). It can
also be observed that the amplitudes of the peaks corresponding to higher frequencies are
lower than those corresponding to low frequencies. This is due to the fact that bilinear
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systems, like other physical systems, act as low-pass filters. The PSD plot of X1 (k) contains
a single peak that corresponds to the excitation input frequency, whereas X2(A;) contains 3
peaks: the one corresponding to the input frequency, double the input frequency and zero.
Similarly, as the value of TV increases by 1, one more peak is added to its PSD plot, which
corresponds to the next harmonic.

The vector of basis functions F(&) is formed for the perturbation order TV = 1, and the
input time-history for the ELM F(?;)?(?;) is generated numerically. The choice of TV = 1
implies that there will be no basis functions to capture the bilinear effects on the state
due to the term Nx(fc)u(A;) in accordance with Eq.(2.5). Fig.4.2 presents the plots of the
steady-state portions of the time-histories of the state x(fc) and its representation x(fc) in
terms of the basis functions. The amount of mismatch between them is calculated using

error(x(fc),x(A;)) to be 21.5%, which is large to start with, but will shrink through the
iterative process.

The corresponding ELM is identified by inputing to the DirectID algorithm the steady-
state portion of the output time-history y(k) and the generated input time-history F(&)?(&).
The identified ELM is fed F(&)?(?:) to reproduce the state of the ELM zz(k). The iterative
procedure described in Section 4.2.2 is carried out to obtain the steady-state portions of
the time histories for z3(k),z4(k), ¦ ¦ ¦ , z40(/c). Fig.4.3 presents the PSD plots of the steady-
state portions of the time-histories of the reproduced state Z4 (k)(i = 2, 3, 4, 5), the state of
the original bilinear system x(fc), excitation input u{k) and ith order perturbation theory
approximation of the state x¿(A;)(¿ = 2,3,4,5). It can be observed from these plots that
the peaks of the PSD plots of z.(/c) are aligned with those of x¿(fc), indicating that the
reproduced states at the end of each iteration corresponds to an order of iteration.

Furthermore, the mismatch between the original output and the reproduced output
yz?;(/c) at each iteration can be quantified using error(y(fc),yz?;(fc)), where

yZi(fc) = CiZi(fc) + Otu(k) (4.28)

Fig.4.4 shows the calculated value of error(y(k),yZl(k)) against the approximation order
i. It can be observed from this plot that the error drops almost exponentially to a small
number below which the computational precision is lost, in about 30 iterations, and no
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imation ? (k)
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Figure 4.4: The plot of error(y(k) ,yZi(k)) versus the approximation order i

further improvement is observed beyond it. The fluctuations beyond the 30th iteration are
due to the loss of computational precision.

The bilinear system matrices are identified using Eq.(4.23) to be:

A30 = 0.3000 B30 = 0.2000 N30 = 0.3000 C30 = 1.0000 D30 = 0.0000 (4.29)

which are exactly equal to the original bilinear system matrices.

4.3.1 Generic Numerical Example

Having illustrated the major concepts through a simple illustrative example, let's analyze
a second order dimensionless example. Consider a bilinear system of the form in Eq.(4.1),
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where

0.9924 0.0118

-1.1778 0.8747
,B =

0.0126

0.0042
,N =

0.2000 0

0 0.2000 (4.30)
C 1 2 , D = 0.0000

Thus, the number of inputs and outputs remain equal to 1. Unlike the bilinear model used
in the illustrative example, this model contains 2 states, which are coupled through the non-
diagonal A matrix. The parameter ? is increased to 2 in accordance with the requirement
that rp > n.

Let's also keep the sampling period r to be 0.01 seconds, while increasing the length of
the set of input /output measurement time-history to 4, 000 time-steps. The steady-state

i

portion of the response is assumed to start at time-step s = 749, since ? (A + Nu(Zc)) <
fc=l

le-20 for s < j < 20, 000. The base excitation input u{k) is constructed as in Eq.(4.2) using
Table 2.6. However, it is enriched via the addition of a HRC obtained by passing a randomly
generated WGN, whose RMS is 5% of the RMS of the base signal, through a highpass IO4'1
order Butterworth filter, which has a cut-off frequency equal to 45Hz. The cut-off frequency
corresponds to 90% of the Nyquist frequency, which is 50Hz. This is the same filter whose
Bode plot was presented in Fig.3.1. Moreover, Fig.4.5 shows the designed excitation input
u{k) before and after the addition of HRC. The addition of the HRC is necessary to eliminate
the ill-conditioning of the matrix V in Eq. (4. 19). Since the construction of V requires the a
priori knowledge of y(k), the minimum amount of enrichment necessary cannot be precisely
determined. However, the amount of HRC needed can be roughly estimated by slightly
increasing the amount that would make the lower submatrix of V, which only contains
the time-shifted rows of F(?;)??(?;), full-rank. In fact, the choice of 5% for the amount of
enrichment yields a condition number of 1.3637e3 for the lower submatrix of V and 1.4502e3
for V itself, implying that both of them are full-rank. On the other hand, if u{k) were not
enriched by HRC, the condition number for the lower submatrix of V and V itself would
be 1.1049el4 and 1.1350el4, respectively.

The vector of basis functions F (A;) is formed for the perturbation order N = 2, and
the input time-history for the ELM &{k)u{k) is generated numerically. The amount of
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Figure 4.5: The plot of the time-history of excitation input u(k) before and after enrichment
by hrc(k)
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Figure 4.6: The plot of error(y(k),yZl(k)) versus the approximation order i

mismatch between the steady-state portions of the time-histories of the state x(fc) and its
representation x(fc) in terms of the basis functions is calculated using error(x(k),St(k)) to
be 8.0914% and 10.0118%, for the first and second state, respectively.

The corresponding ELM is identified by inputing the steady-state portion of the output
time-history y(k) and the generated input time-history <I?(/c)u(fc) to the DirectID algorithm.
Then, the iterative process described in Section 4.2.2 is carried out, and the state time-
histories of the identified ELMs Z3 (k), z4(/c), · · · , Z38 (k) and the time-histories of the outputs
reproduced by them, yZ3(fc), yZ4(fc), ·· · ,yZ3g(fc), are obtained. Fig.4.6 shows the amount
of mismatch between y(k) and yZi(k)(i = 3,4, ¦¦ · ,38), quantified by error(y(k),yZi(k)).
It is clear from the plot that the output reproduction error drops almost exponentially to

a small number below which the computational precision is lost, in merely 26 iterations.



www.manaraa.com

106

B,

N38 =
(4.31)

Needless to say, the ELMs obtained beyond the 26i/l iteration are also equally valid. In fact,
the identified bilinear system matrices can be extracted from the last ELM as follows:

1.3818e - 14 1.0000

-8.8195e - 1 1.8671

2.100Oe -002

-9.7793e - 003

2.000Oe-I -1.9105e-14

8.9016e - 14 2.000Oe - 1

C38 = µ 7.2642e - 18
D38 = 0.0000

Since the identified bilinear system matrices A38 and N38 are related to the original bilinear
system matrices A and N through the similarity transformation described in Eq. (4.25),
their respective eigenvalues need to be the same. In fact, the eigenvalues of both A38 and
A are both calculated to be identically equally to 0.09336 T ¿0.1022, while the eigenvalues
of both N38 and N are equal to 0.2000. The exact match between the identified and actual
eigenvalues of the system matrices is indicative of remarkable performance of the proposed
identification method.

As another measure of the quality of the identification, a new random input of length
20,000 time-steps is generated from a Gaussian distribution with mean 0 and standard
deviation 1. The generated test input u¿(fc) is fed to both the original and the identified
bilinear systems and the corresponding output time histories, yt(k) and yp(k) respectively,
are obtained. Fig.4. 7 shows the plot of the predicted output time-history yp(k) against
the actual output time-history yt(fc). The prediction error between the two is calculated
by error(yp(k),yt{k)) as 7.1254e — 11%. The smallness of the prediction error clearly
illustrates that the predicted output yp{k) is a very accurate estimate of the output yt(k)
of the bilinear system.

The perfect match between the eigenvalues of the identified and original system matrices,
and the "almost" perfect prediction of the output produced by the test input confirm the
success of the proposed identification algorithm.
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Figure 4.7: The predicted output time-history yp(k) and the simulated test output time-
history yt(k)
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4.4 Conclusions

The proposed method in Chapter 2 first casts a bilinear model into an ELM by ex-
pressing the steady-state portion of its state in terms of sine and cosine basis functions
for an Nth order perturbation theory approximation, then, identifies the ELM, and finally
extracts the bilinear system matrices from the identified ELM. In this chapter, it is shown
that the steady-state portion of state time-history reproduced by the identified ELM cor-
responds to the (TV + \)th order perturbation theory approximation. It uses this fact to
generate a recursive algorithm where the order of the perturbation theory approximation
is increased over each iteration until the steady-state portion of the state time-history is
exactly reproduced. The steady-state portion of the resulting state time-history is, then,
used to identify the bilinear system matrices exactly. The proposed method is distinguished
from the existing methods in the literature most strikingly by requiring only a single set of
input/output measurements and allowing for the design of the excitation input, while still
yielding an exact identification.
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Chapter 5

Conclusions and Future Research

5.1 Conclusions

This work presents an attempt at the identification of single-input, multi-output, discrete-
time, state-space bilinear models. While the existing methods in the literature impose strict

restrictions either by requiring a specific type of excitation input such as pulses of varying
durations, white inputs, etc. or by entailing a multiple number of experiments, the pro-
posed methods relax these requirements by allowing the design of the excitation input and
by requiring only a single experiment.

The proposed methods focus on approximation of the bilinear model by an equivalent
linear model (ELM), thereby converting a bilinear model identification task to a linear
model identification task at the expense of introducing minor approximation errors. Such
a conversion is accomplished by exciting the bilinear system with a linear combination of
sine and cosine functions of user-selected frequencies and amplitudes, so that the steady-
state portion of the state time-history of the bilinear system can be expressed as a linear
combination of sine and cosine basis functions.

Perturbation theory is used to show that the frequencies of the aforementioned sine

and cosine basis functions can be chosen efficiently as the sums and differences of the

input frequencies to obtain a small state approximation error using a small number of basis
functions. One of the basis functions generated in this fashion has to be a constant basis
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function, unless the perturbation order used in approximating the state is 1 and the DC
gain of the excitation input is equal to zero. Thus, the resulting ELM was shown to be
non-unique due to the presence of 2 linearly dependent rows in the input vector, indicating
that it could not be identified. This problem was remedied by compressing the linearly
dependent rows of the input vector and the corresponding columns of the system matrices
they multiply into single columns.

In the first proposed method, the resulting ELM is identified using an LTI system
identification algorithm OKID. However, one of the steps of the OKID algorithm requires
that a matrix containing time-shifted rows of input and output time-histories be inverted.

The inversion of such a matrix cannot be accomplished, since in general the matrix is ill-
conditioned as some of its rows are linearly dependent. In order to uncorrelate the linearly
dependent rows of the aforementioned matrix, the user-designed excitation input is enriched
by addition of a subtle amount of random component in the form of white Gaussian noise,
thereby giving the excitation input to be fed to the bilinear system its final form. Although
the exact amount of the random component necessary requires the knowledge of the output
time-history, it was shown that the required amount can be predicted by slightly increasing
the amount of random component sufficient to remove the ill-conditioning in the submatrix
containing the time-shifted rows of the input-time history (i.e. excluding the rows containing
the time-shifted rows of output time-history).

It was shown that the addition of the random component allows the identification of
the ELM via OKID by enabling the aforementioned matrix inversion at the expense of
increasing the state approximation error because the basis function frequencies selected by
perturbation theory do not contain all of the frequencies present in the random component.
However, since the amount of the added random component is subtle compared to the user-
designed portion of the excitation input, the increase it causes on the state approximation
error was shown to remain only minor. Moreover, it was depicted that if the user prefers to
choose the excitation input frequencies randomly as opposed to evenly, the excitation input
exhibits higher richness. Hence, a smaller amount of random component suffices to enable
the inversion of the matrix. The ill-conditioning problem also reveals the importance of the
usage of perturbation theory to keep the number of basis functions small due to the fact
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that the higher the number of basis functions used, the more ill-conditioned the matrix to
be inverted becomes.

Even though perturbation theory allows for picking the basis function frequencies ef-
ficiently, it was explained why the choice of perturbation order should still be performed
carefully. On the one hand, the choice of a too small perturbation order does not allow an
accurate approximation of the state in terms of the basis functions. On the other hand,
if the perturbation order is chosen too high, it was shown to augment the ill-conditioning
and, thus, require a higher amount of random component, which itself increases the state
approximation error.

Apart from the choice of perturbation order, the effect of the choice of data length was
also discussed. It was shown that even though the basis functions do not necessarily include
all of the frequencies by present in the state, the lack of the missing basis functions can be
compensated by the rest of the basis functions for short data lengths. On the other hand,
it was also outlined that for longer data lengths, the ill-conditioning diminish.

Lastly, the effect of the choice of the OKID parameter p, which is proportional to the
number of times the input and output time-histories are shifted to construct the matrix
whose inversion is problematic, with regard to the ill-conditioning issue was evaluated. It
was shown that for higher values of p, the condition number of the ill-conditioned matrix
grows larger; therefore, it should be kept minimal, despite the fact that a higher value of ?
also enhances the robustness of the OKID algorithm against both process and measurement
noise.

A set of recovery equations are presented to extract the bilinear system matrices from
the identified ELM. The identified bilinear system matrices are related to the original bi-
linear system matrices through a linear coordinate transformation. The high quality of the
identified bilinear model was attributed to the small difference between the output time-

histories obtained by inputting a new, randomly generated test signal to the identified and
original bilinear systems.

As an improvement to the first proposed method, the second proposed method focuses on
curtailing the state approximation error using a different set of basis functions to represent
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the steady-state portion of the state time-history more accurately, keeping the excitation
input the same, except for the form of the added random component. For higher accuracy,
in this method, the excitation input is enriched by a highband random component. It was
shown that as the cutoff frequencies of the highband random component is increased the
state approximation error decreases. Such a reduction is explained by the fact that all
physical systems act as low-pass filters and the effect of the addition of highband random
component on the output is attenuated by the bilinear system.

Along with the second proposed method, the concepts of input reduction, the process
of eliminating the linearly dependent rows of the input vector, and input absorption, the
process of eliminating the linearly dependent rows of the input vector on the basis functions,
were also introduced. As in the first proposed method, the second proposed method ini-
tially yields an ELM using the sine and cosine basis functions to represent the steady-state
portion of the state time-history and compressing the dependent rows of the input vector
and the columns of the system matrices they multiply. However, rather than identifying
the arising ELM via an LTI system identification algorithm, the second proposed method
uses the interaction matrix formulation to depict that the ELM can be converted to an
overparameterized ELM using the steady-state portions of the past input and output time-
histories as the steady-state portion of the state time-history. In addition, the superiority
of the data basis functions to the sine and cosine basis functions are shown. However, the

resulting ELM is in general not unique, since some of the rows of its state time-history are
linearly-dependent. After eliminating the redundant rows of the steady-state portion of the
state time-history, a new, unique and overparameterized ELM is identified by performing a
least-square fit, since the state-time history is already known. It is shown that the overpa-

rameterized ELM cannot be identified uniquely, unless the identified ELM is enriched by a
random component.

In order to obtain a minimal order realization of the overparameterized ELM, its unob-

servable states are discarded. The resulting minimal order ELM is used to reproduce the
steady-state portion of the state time-history, which can then be used to recover the bilinear
system matrices, since the steady-state portion of the state time-history is shared by both
the bilinear model and the minimal order ELM. The identified bilinear system matrices are
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linked to the original bilinear system matrices through a linear coordinate transformation.
As in the first method, the validity of identified bilinear model was illustrated by the fact
that both the identified and original bilinear systems produce the "almost" exactly the same
output, when both are fed a new, randomly generated test input signal.

The third proposed method is an exact, iterative method of bilinear system identification
with an exponential speed of convergence. It uses the same excitation input as the second
proposed method, which is obtained by enriching a linear combination of sine and cosine
functions of user-selected frequencies and amplitudes with a highband random component.
As in the first proposed method, the bilinear system is cast into an ELM by expressing the
state in its bilinear term in terms of sine and cosine basis functions. The frequencies of the

basis functions are derived for an Nth order perturbation theory approximation. A unique
ELM is obtained by compressing the columns of the system matrices corresponding to the
dependent rows of the input vector. The resulting ELM is identified using an LTI system
identification algorithm DirectID, and the steady-state portion of its state time-history is
reproduced. By rearranging the terms in the perturbation theory based state approximation
equation, it was shown that the steady-state portion of the reproduced state time-history
corresponds to the (N + l)th order perturbation theory approximation. Moreover, the same
equation is modified to generate an ELM whose state corresponds to the (N + 2)th order
perturbation theory approximation to the state of the bilinear system and whose input
vector contains the rows of the excitation input and the (N + l)th order approximation to
the state. The new ELM is identified using DirectID and its state reproduced to recover
the (N + 2)th order approximation to the steady-state portion of the state time-history.
The aforementioned process is repeated iteratively until the reproduced state time-history
does not change significantly, marking the convergence of the iterations. Finally, it was
explained that the bilinear system matrices could be recovered through a least square fit
using the steady-state portion of the reproduced state time-history.
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5.2 Future Research

Despite the fact that the proposed methods are capable of identifying bilinear systems
rather accurately or even exactly. Future research should address the 2 main questions of
how the performance of the methods can be enhanced and how the domain of problems the
methods are applicable to can be expanded.

Firstly, all proposed methods make use of sine and cosine basis functions to convert
the bilinear system identification task to a linear system identification task. However, the
choice of sine and cosine basis functions is not unique, even though rather effective when
the system is excited by a linear combination of sine and cosine functions. There may
exist other pairs of excitation inputs and corresponding sets of basis functions that allow a
more accurate approximation of the state for a specific number of basis functions. Further
research should be carried out to identify such superior pairs.

The proposed methods require that the excitation input is enriched by a subtle amount
of random component (RC), which contributes by a small amount to the approximation
error of the state in terms of the sine and cosine basis functions whose frequencies are
selected in accordance with perturbation theory, neglecting the frequencies introduced by
incorporating the RC. Future research should investigate whether the need for RC can be
eliminated. Through the relation of RC with the issue of ill-conditioning described in the
thesis, such a research effort can return rewarding outcomes that can be used to expand
the complexity of problems the proposed methods are applicable to.

The third proposed method paves the way for development of an exact, iterative identi-
fication algorithm. Although the sufficient set of conditions necessary to ensure the conver-
gence of the method needs to be addressed in a future research effort, it was shown in this
thesis that the state approximation error can be completely eliminated through a recursive
algorithm. The significance of the method also stems from the fact that the increase in
the state approximation error due to the addition of RC becomes trivial, as the recursive
algorithm yields an exact state time-history anyway. The most outstanding aspects of the
proposed method in comparison to the existing methods in the literature are that (i) it en-
tails a single set of input/output time-histories, (ii) it allows for the design of the excitation
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input, and (iii) it identifies the bilinear model exactly.

The fact that the proposed methods make use of only the steady-state portion of the
measured data may hamper the identification of bilinear systems with a considerably long
transient state time-history. Future research should be conducted to query whether a new
formulation, such as the interaction matrix formulation, can be adapted to reformulate the
problem so that the entire measurement time-history, including its transient portion, can
be benefited from.

It should be noted that the proposed methods in this work are confined to single-
input bilinear systems. Future research should be conducted on how the methods can be
generalized to the case of multi-input bilinear systems or can be adapted to other nonlinear
problems.
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